Testing the validity of two putative sympatric species from Sinocyclocheilus (Cypriniformes: Cyprinidae) based on mitochondrial cytochrome bequences

YAN-YAN CHEN ${ }^{1}$, RONG LI ${ }^{1}$, CHUN-QING LI ${ }^{1,2}$, WEI-XIAN LI ${ }^{3}$, HONG-FU YANG ${ }^{4}$, HENG XIAO ${ }^{1,2,5}$ \& SHAN-YUAN CHEN ${ }^{1,5}$
${ }^{1}$ School of Life Sciences, Yunnan University, Kunming 650091, China
${ }^{2}$ Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming 650091, China
${ }^{3}$ Heilongtan Reservoir of Shilin County, Yunnan Province, Shilin 652200, China
${ }^{4}$ Fisheries Administration of Qiubei County, Yunnan Province, Qiubei 653200, China
${ }^{5}$ Corresponding authors. E-mail: xiaoheng@ynu.edu.cn, E-mail: chensy@ynu.edu.cn

Abstract

There are over 60 species within the freshwater fish genus Sinocyclocheilus (Cypriniformes: Cyprinidae) distributed throughout the Yunnan-Guizhou Plateau and its surrounding areas in China. In recent years, the increasing number of new species described has raised some controversy about the validity of several species within this genus, notably the putative sympatric species pair S. qiubeiensis and S. jiuchengensis. To test the validity of S. qiubeiensis and S. jiuchengensis, we analyzed the complete sequences of the mitochondrial cytochrome b (CYTB) gene of 20 identified species and one outgroup species. Phylogenetic relationships were reconstructed using CYTB with maximum likelihood (ML) and Bayesian inference (BI) methods. Our phylogenetic results showed that all individuals of S. qiubeiensis and S. jiuchengensis clustered in one clade with strong support. In addition, the genetic distance between the two species was 0.11%, within the range observed at the intraspecific level. The most recent common ancestor of S. qiubeiensis and S. jiuchengensis dated back to 0.13 million years ago, indicating little time for complete speciation to have occurred. These results clearly support the viewpoint that S. jiuchengensis is a synonym of S. qiubeiensis.

Key words: Mitochondrial DNA, CYTB, molecular identification

Introduction

The freshwater fish genus Sinocyclocheilus (Cypriniformes: Cyprinidae) is endemic to China and is distributed in the Yunnan-Guizhou Plateau (Eastern Yunnan Province and Southern Guizhou Province) and the surrounding Northwestern Guangxi Zhuang Autonomous Region (Zhao \& Zhang 2009). The genus Sinocyclocheilus harbors a rich species diversity, with a total of 55 species reported by the end of 2009 (Zhao \& Zhang 2006; Romero et al. 2009). Additionally, there is an increasing number of new species reported in recent years, including S. huangtianensis Zhu, Zhu, and Lan 2011, S. xichouensis Pan, Li, Yang, and Chen 2013, S. anshuiensis Gan, Wu, Wei, and Yang 2013, S. jinxiensis Zheng, Xiu, and Yang 2013, S. gracilicaudatus Wang, Zhao, Yang, and Zhang 2014, and S. brevifinus Li, Li, and Mayden 2014. There are currently over 60 species within the genus Sinocyclocheilus, which inhabit different environments (surface and/or cave waters) and display diverse morphological characteristics including varying degrees of eye and pigment degeneration (Romero 2001; Romero \& Paulson 2001).

With the increasing number of new species reported, it is becoming more difficult to perform comparative morphological analyses between putative new species and previously known species. This has caused controversies about the validity of some species within this genus. For instance, two putative sympatric species S. qiubeiensis Li, Liao, and Yang 2002 and S. jiuchengensis Li, Liao, and Yang 2002 from a vauclusian spring were initially identified and described as two distinct species because of differences in body squamation (Li et al. 2002).

[^0]Li et al. (2002) observed that the body scales of S. qiubeiensis were partially covered and irregularly arranged, whereas those of S. jiuchengensis were fully covered and regularly arranged. However, other researchers considered the degree of body squamation to be an unreliable taxonomic characteristic and thus claimed that S. jiuchengensis was a synonym of S. qiubeiensis (Zhao \& Zhang 2009). If these two putative sympatric species are indeed valid species, they could be used as an excellent case for studying sympatric speciation within this genus. Therefore, it is of critical importance to have independent molecular evidence to examine if S. jiuchengensis and S. qiubeiensis are two valid species.

In recent years, molecular markers have been used as complementary tools for species identification and to settle taxonomic discrepancies within the genus Sinocyclocheilus. For example, using sequences of the mitochondrial gene cytochrome b (CYTB), Liang et al. (2011) successfully resolved a taxonomic controversy between S. tianeensis Li, Xiao, Zan, Luo, Ban, and Fen 2003 and S. furcodorsalis Chen, Yang, and Lan 1997, confirming both to be one species under the name S. tianeensis (Liang et al. 2011). In addition, Li et al. (2008) used sequences of CYTB and NADH dehydrogenase subunit 4 (ND4) to examine whether S. lunnanensis Li 1985 and S. halfibindus Li and Lan 1992 were synonyms of S. oxycephalus Li 1985 and S. microphthalmus Li 1989, respectively. Collectively, it has been established that the CYTB gene is an efficient and valid maker for species delineation (Johns \& Avise 1998), as also demonstrated in examples of Sinocyclocheilus (Li et al. 2008; Liang et al. 2011). It is therefore reasonable to believe that CYTB could be informative for species delineation of two putative sympatric species: S. qiubeiensis and S. jiuchengensis.

To examine the validity of the two putative sympatric species S. qiubeiensis and S. jiuchengensis, we conducted phylogenetic analyses of species of Sinocyclocheilus distributed in Southeastern Yunnan based on CYTB sequences. Southeastern Yunnan is characterized by the typical karst landforms with complex and intersecting underground water bodies, and harbors approximately 30 species of Sinocyclocheilus species, including S. qiubeiensis and S. jiuchengensis.

Materials and methods

Samples. A total of 40 individuals of three putative species (S. qiubeiensis, S. jiuchengensis, and S. maculatus) were collected from Yanshan County and Qiubei County of Yunnan Province, China (Table 1). Tissue samples were preserved in 100% ethanol and voucher specimens were deposited in the Zoological Museum of Yunnan University. In addition, two samples of S. qiubeiensis (collected from Songming County) reported by Li et al. (2008) were analyzed in this study. All previously published CYTB sequences of the species of Sinocyclocheilus distributed in the Yunnan Province were retrieved from GenBank for phylogenetic analyses (Table 2). Based on phylogenetic relationships among cyprinid species (Wang et al. 2007), Barbodes laticeps was chosen as the outgroup for phylogenetic analyses in this study and an additional seven outgroup species were used for estimating the divergence times (Table 2).

DNA preparation, PCR amplification and sequencing. Genomic DNA was extracted from muscle tissues using a TIANamp Genomic DNA Kit (TianGen Biotech Co. Ltd, Beijing) according to the manufacturer's instructions. The complete CYTB gene sequences were amplified using polymerase chain reactions (PCR) with two primers: SCytb03F CTCAGACTTTAACTGAGACC and SCytb04R GAATTCTGGCTTTGGGA (Liang et al. 2011). PCR amplifications were carried out in $50 \mu \mathrm{l}$ reaction mixtures consisting of $5 \mu \mathrm{l} 10 \times$ PCR buffer, 0.125 $\mathrm{mM} \mathrm{MgCl} 2,0.01 \mathrm{mM}$ dNTPs, $0.1 \mu \mathrm{M}$ each primer, 1.2 U Taq DNA polymerase (Takara Biotechnology Co. Ltd, Dalian), and approximately 50 ng of genomic DNA. Amplification was carried out with denaturing at $94^{\circ} \mathrm{C}$ for 5 $\mathrm{min}, 35$ cycles of denaturing at $94^{\circ} \mathrm{C}$ for 60 s , annealing at $46.2^{\circ} \mathrm{C}$ for 60 s , and extension at $72^{\circ} \mathrm{C}$ for 60 s , followed by extension at $72^{\circ} \mathrm{C}$ for 10 min . PCR products were electrophoresed in 1.5% agarose gel and successful amplifications were sent to BGI-Shenzhen for Sanger-sequencing.

Data analyses. Raw sequence traces were checked and aligned using the software package DNASTAR v7.1 (DNASTAR Inc., Madison, WI, USA). All sequences have been deposited in the GenBank database with accession nos. MF324971-MF325010 (Table 2). The CYTB gene sequences were aligned in ClustalW implemented in MEGA6 (Tamura et al. 2013). The aligned sequence data was later used to calculate nucleotide compositions, pairwise distances, and transition/transversion ratios in MEGA6 (Tamura et al. 2013). Nucleotide substitution saturation was analyzed in DAMBE (Xia \& Xie 2001). Diversity measures and the number of haplotypes were
calculated in DnaSP5.10 (Librado \& Rozas 2009). Median-Joining networks among haplotype sequences were constructed by POPART (Leigh \& Bryant 2015). Neutrality tests Tajima's D (Tajima 1989) and Fu's Fs (Fu \& Li 1993) for the datasets of S. qiubeiensis_P1 (samples from Jiulongtan of Quibei County), S. qiubeiensis_P2 (samples from Baima of Quibei County), and S. qiubeiensis_P3 (samples from Dayile of Quibei County) were calculated using DnaSP5.10 and Arlequin3.0 (Excoffier et al. 2005; Librado \& Rozas 2009).

Phylogenetic analyses were conducted using maximum likelihood (ML) and Bayesian inference (BI) analyses. The optimal nucleotide substitution model was selected using likelihood ratio tests in jModeltest 2.17 (Posada 2008). The optimal model was GTR+G. The ML tree was constructed in PAUP* 4.0 b 10 (Swofford 2003) using a heuristic search and tree-bisection-reconnection (TBR) branch swapping. Confidence values on nodes were assessed using non-parametric bootstrapping (Felsenstein 1985) with 1000 replications. It is usually considered that a clade is supported if the bootstrap percentage is equal or greater than 70% (Hillis \& Bull 1993).

We performed Bayesian analyses with MrBayes v3.2 (Ronquist \& Huelsenbeck 2003). The best-fitting nucleotide substitution model GTR + G was applied. Random starting trees were used and analyses were run for $1 \times$ 10^{7} generations using four independent chains (one cold and three heated), sampling the Markov chain at intervals of 100 generations for a total of 1×10^{5} generations. The samples prior to reaching stationary (25,000 trees) were discarded as burn-in and the remaining trees were then used to generate a majority-rule consensus tree. It is generally considered that a clade is strongly supported if the posterior probability is equal or greater than 95% (Leaché \& Reeder 2002).

The divergence times were estimated using the MCMCtree program of PAML (Yang 2007) using the Bayesian relaxed clock method. To achieve computational efficiency, a normal approximation to the maximum likelihood estimates (MLEs) of branch lengths was used. The substitution rate was estimated by the BASEML program of PAML4.4 (Yang 2007). The shape parameter (α) and the scale parameter (β) for the gamma prior of the root rate parameter and the rate drift parameters were determined by suggested procedures. The denoted nodes C1 and C2 were used as calibration points. C 1 was based on geologic evidence (0.15 Ma , set as a minimum) of the separation of Qinghai Lake from the Upper Yellow River (Li et al. 2001). C2 was based on molecular evidence (15.96 Ma, set as a maximum) for the divergence of Cyprinini and Labeonini (Wang et al. 2007). The first 1×10^{6} generations were discarded as burn-in. The subsequent 1.0×10^{8} generations were included in the analyses. The sample frequency was per 1000 generations.

Results

Sequence characteristics and haplotype analyses. We obtained the complete CYTB (1140 bp) sequences of 40 individuals. None of these protein-coding sequences had premature stop codons or ambiguous nucleotides in translation, indicating that these sequences were functional genes (Zardoya \& Meyer 1996). The mean nucleotide base compositions were A 29.1%, C 28.4%, G 15.2%, and T 27.3% across all sites for all sequences. The transition/transversion ratio (R) was 5.89. These characteristics are typical for mitochondrial protein-coding genes (Cantatore et al. 1994). In addition, there were 107 variable sites defining 7 haplotypes (Hap1-7) identified among all sequences of S. qiubeiensis and S. jiuchengensis, including two reported sequences of S. qiubeiensis reported by Li et al. (2008) (Table 1 and Fig. 1). All samples of S. qiubeiensis and S. jiuchengensis collected from the type locality (Qiubei County) shared the main haplotype expect for one sample of S. qiubeiensis from Dayile of Quibei County. However, two sequences of S. qiubeiensis (S. qiubeiensis_D) reported by Li et al. (2008) did not cluster with our samples. Furthermore, the genetic distance between our sequences of S. qiubeiensis and the two sequences of S. qiubeiensis reported by Li et al. (2008) is 9.41%, much higher than the threshold of 2% for intraspecific divergence (Johns \& Avise 1998).

Phylogenetic analyses. The Bayesian tree is shown in Fig. 2. The topology of the ML tree (not shown) was essentially identical to that of the Bayesian tree. On the Bayesian tree, three major clades (I, II, and III) could be identified. However, the exact phylogenetic positions among these three clades were not resolved (Fig. 2). Noticeably, the two putative sympatric species S. qiubeiensis and S. jiuchengensis within the clade III grouped together as a monophyletic subclade with strong support ($\mathrm{BPP}=1$). Given that S. qiubeiensis and S. jiuchengensis are distributed in Qiubei County of Yunnan Province, the phylogenetic pattern among S. qiubeiensis_P1, S. jiuchengensis, S. qiubeiensis_P2, and S. qiubeiensis_P3 indicates these samples likely belong to one single species.

FIGURE 1. The Median-joining network for 7 CYTB haplotypes of all sampled S. qiubeiensis and S. jiuchengensis.
Genetic distance analyses. The level of interspecific genetic divergence is the main criterion for species identification by molecular methods (Peng et al. 2009). Previous studies demonstrated that interspecific divergence was equal to or larger than 2% for CYTB (Johns \& Avise 1998). The CYTB genetic distance between S. qiubeiensis (collected from Qiubei County) and S. jiuchengensis was 0.11%, while intraspecific genetic distances of S. qiubeiensis and S. jiuchengensis were 0.14% and 0.09%, respectively (Supplementary Table S1). All values were less than the threshold of 2% for interspecific divergence of CYTB gene among animal species. This indicated that genetic divergence between S. qiubeiensis (collected from Qiubei County) and S. jiuchengensis was at the levels typically observed within a species, further supporting them as one single species.

The most recent common ancestor estimation and neutrality tests. Our results showed that the most recent common ancestor (MRCA) of the sampled species of Sinocyclocheilus originated about 11 million years ago (Mya) and the MRCA of S. qiubeiensis (collected from Qiubei County) and S. jiuchengensis dated back to about 0.13 Mya (Fig. 3).

All samples of S. qiubeiensis collected from Qiubei County were treated as one population for conducting neutrality tests. The values for Tajima's D and Fu's $F s$ were 0.7064 ($\mathrm{P}>0.1$) and $0.32652(\mathrm{P}>0.1)$, respectively. Results of both tests indicated no signs of population expansion and suggested long-term population stability.

Discussion

The validity of \boldsymbol{S}. qiubeiensis and \boldsymbol{S}. jiuchengensis. The results support the viewpoint that S. jiuchengensis and S. qiubeiensis (collected from Quibei County) are not two valid species and the former is a synonym of the latter (Zhao \& Zhang 2009). In this study, three lines of molecular evidence support this viewpoint. First, S. jiuchengensis and S. qiubeiensis (collected from Quibei County) shared the same haplotype (Hap_1) in the medianjoining network (see Fig. 1). Second, on the phylogenetic tree, the CYTB gene sequences from two putative species intermingled and formed a monophyletic subclade (rather than two distinct clades) with strong support (see Fig. 2). For two different valid species, it is impossible to share the same haplotype for the relatively fast-evolving CYTB gene, assuming no introgression occurred. Third, the level of genetic divergence (0.11%) between S. jiuchengensis and S. qiubeiensis did not reach the interspecific level. A widely accepted routine demonstrated that interspecific genetic divergence at the CYTB gene between closely related vertebrate species (including fishes) was generally greater than 2%, while intraspecific genetic divergence at this gene was generally less than 1% (rarely greater than 2\%) (Johns \& Avise 1998). According to this threshold, genetic divergence between the two putative species S. jiuchengensis and S. qiubeiensis was still at the intraspecific level. Finally, the time to the MRCA of the two putative species was 0.13 Mya , a short time that was likely insufficient for complete speciation to have occurred.

FIGURE 2. The Bayesian tree constructed based on CYTB sequences of species of Sinocyclocheilus from Yunnan. Node support values are Bayesian posterior probabilities.

The main morphological difference between S. jiuchengensis and S. qiubeiensis is body squamation (Li et al. 2002) (Supplementary Figure S1). However, this characteristic has been considered unreliable for species taxonomy and cladistic analyses. This was supported by two previous morphological studies that generated contradictory phylogenetic results because of different weights given to scales and other characteristics (Shan \& Yue 1994; Wang et al. 1999). When mapping the scale characteristics on a molecular phylogeny of Sinocyclocheilus, it was clearly indicated that this trait is phylogenetically uninformative (Xiao et al. 2005).

Collectively, our independent molecular evidence further supported that S. jiuchengensis is a synonym of S. qiubeiensis (Zhao \& Zhang 2009).

TABLE 1. List of species, localities, and haplotype information for species from southeastern Yunnan. N indicates the number of samples. P1, P2, and P3 indicate samples collected from Jiulongtan, Baima and Dayile of Qiubei County, respectively. D indicates samples/sequences downloaded from the NCBI GenBank database. The numbers in parentheses indicates the number of sequences.

Species	Locality	N	Haplotype
S. qiubeiensis_P1	Jiulongtan, Qiubei County, Yunnan	6	Hap_1 (6)
S. qiubeiensis_P2	Baima, Qiubei County, Yunnan	3	Hap_1 (3)
S. qiubeiensis_P3	Dayile, Qiubei County, Yunnan	15	Hap_3 (11), 4 (3), Hap_5 (1)
S. jiuchengensis	Jiulongtan, Qiubei County, Yunnan	4	Hap_1 (3), 2 (1)
S. qiubeiensis_D	Songming County, Yunnan, Li et al. (2008).	2	Hap_6 (1),7 (1)
S. maculatus	Beishapo, Yanshan County, Yunnan	12	Hap_8 (5),9 (1), 10 (1), 11 (1), 12 (4)

FIGURE 3. Chronogram of the Sinocyclocheilus and outgroup species based on Bayesian relaxed clock analyses. Time scale is in millions of years ago (Mya). C1 and C2 denote the nodes used for calibrating molecular date estimates. The numbers above the nodes indicate the estimated divergence times, while the numbers below the nodes indicate the 95% credible interval on time estimates.

TABLE 2. List of species, localities, and GenBank accession numbers for species previously studied.

Species	Locality	Accession No.
S. hyalinus	Alugudong, Luxi County, Yunnan	AY854721
S. tingi	Fuxianhu Lake, Yunnan	AY854701
S. guishanensis	Guishan, Shilin County, Yunnan	AY854722
S. oxycephalus	Heilongtan,Shilin County,Yunnan	Y854685, AY854686
S. macrocephalus	Heilongtan,Shilin County,Yunnan	AY854684, AY854683
S. huaningensis	Huaning County, Yunnan	AY854718
S. anophthalmus	Jiuxiang,Yiliang County,Yunnan	NC_023472, KF892542
S. maitianheensis	Jiuxiang,Yiliang County, Yunnan	AY854710
S. lateristritus	Luliang County, Yunnan	AY854703-AY854707,
S. malacopterus	Luoping County, Yunnan	AY854697-AY854699
S. purpureus	Luoping County, Yunnan	U366189, EU366194
S. rhinocerous	Luoping County, Yunnan	AY854720, NC_027168
S. angustiporus	Luxi County, Yunnan	AY854702
S. grahami	Qinglongsi, Kunming, Yunnan	AY854696, AY854694
S. qiubeiensis_D	Songming County, Yunnan	EU366195, EU366188
S. qujingensis	Wujiafen, Qujing County, Yunnan	AY854719
S. yangzongensis	Yangzonghai Lake, Yunnan	AY854725, AY854726
S. yimenensis	Yimen County, Yunnan	EU366191, EU366192
S. qiubeiensis_P1	Jiulongtan, Qiubei County, Yunnan	MF324978-MF324983
S. qiubeiensis_P2	Baima, Qiubei County, Yunnan	MF324971-MF324973
S. qiubeiensis_P3	Dayile, Qiubei County, Yunnan	MF324984-MF324998
S. jiuchengensis	Jiulongtan, Qiubei County, Yunnan	MF324974-MF324977
S. maculatus	Beishapo, Yanshan County, Yunnan	MF324999-MF325010
S. jii		AY854727
Barbodes laticeps		AY854738
Cyprinus carpio	NC_001606	
Carassius carassius	NC_006291	
Barbus barbus	NC_008654	
Puntius ticto	NC_008658	
Labeo batesii	AB238967	
Gymnocypris przewalskii	Gymnocypris eckloni	

Misidentification of \boldsymbol{S}. qiubeiensis samples in one previous study. Li et al. (2008) initially reported two CYTB sequences of S. qiubeiensis (collected from Songming Country, Yunnan) in a phylogenetic and divergence time estimation study. If the two CYTB sequences belonged to S. qiubeiensis, this would imply that geographic distance (approximately 185 km between Songming and Qiubei) did not play a substantial role in shaping genetic divergence within S. qiubeiensis. Unexpectedly, our phylogenetic analyses showed that two CYTB sequences from S. qiubeiensis from Songmin did not cluster with our sequences of S. qiubeiensis from Qiubei as one monophyletic clade (Fig. 2). The genetic distance between sequences of S. qiubeiensis from Songming and Qiubei was 9.41% (Supplementary Table S1), much higher than the threshold of 2% for intraspecific divergence (Johns \& Avise 1998). Given that our samples were collected from the type locality (Quibei County), S. qiubeiensis from Songming reported by Li et al. (2008) is likely another species. This suggests that one must collect samples from the type locality or alternatively ensure that the species is correctly identified for molecular phylogenetic and evolutionary biology studies on Sinocyclocheilus.

Acknowledgements

This work was partially supported by the National Nature Science Foundation of China (31560111) and the Graduate Student Scientific Research Innovation Project in Yunnan University. S.C. was supported by the Hundred Oversea Talents Recruitment Program of Yunnan Province.

References

Cantatore, P., Roberti, M., Pesole, G., Ludovico, A., Milella, F., Gadaletal, M.N. \& Saccone, C. (1994) Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in mammals. Journal of Molecular Evolution, 39, 589-597. https://doi.org/10.1007/BF00160404
Chen, R.Y., Yang, J.X. \& Lan, J.H. (1997) One new species of blind cavefish from Guangxi with comments on its phylogenetic status (Cypriniformes: Cyprinidae: Barbinae). Zoological Systematics, 22, 219-233.
Excoffier, L., Laval, G. \& Schneider, S. (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50. https://doi.org/10.1177/117693430500100003
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Fu, X.Y. \& Li, H.W. (1993) Statistical tests of neutrality of mutations. Genetics, 133, 693-709.
Gan, X., Wu, T.J., Wei, M.L. \& Yang, J. (2013) A new blind barbine species, Sinocyclocheilus anshuiensis sp. nov. (Cypriniformes: Cyprinidae) from Guangxi, China. Zoological Research, 34, 459-463.
Hillis, D.M. \& Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42, 182-192. https://doi.org/10.1093/sysbio/42.2.182
Johns, G.C. \& Avise, J.C. (1998) A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Molecular Biology and Evolution, 15, 1481-1490. https://doi.org/10.1093/oxfordjournals.molbev.a025875
Leaché, A.D. \& Reeder, T.W. (2002) Molecular systematics of the Eastern Fence Lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches. Systematic Biology, 51, 44-68. https://doi.org/10.1080/106351502753475871
Leigh, J.W. \& Bryant, D. (2015) Popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110-1116. https://doi.org/10.1111/2041-210X. 12410
Li, W.H. \& Fu, Y.X. (1993) Statistical tests of neutrality of mutations. Genetics, 133, 693-709.
Li, G.L. (1989) On a new fish genus Sinocyclocheilus from Guangxi China (Cypriniformes: Cyprinidae: Barbinae). Zoological Systematics, 14, 123-126.
Li, J.J., Fang, X.M., Pan, B.T., Zhao, Z.J. \& Song, Y.G. (2001) Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area. Quarternary Sciences, 21, 381-391.
Li, J., Li, X.H. \& Mayden, R.L. (2014) Sinocyclocheilus brevifinus (Teleostei: Cyprinidae), a new species of cavefish from Guangxi, China. Zootaxa, 3873 (1), 37-48. https://doi.org/10.11646/zootaxa.3873.1.3
Li, W.X. (1985) Description on four new species of Sinocyclocheilus from Yunnan, China (Pisces: Cyprinidae). Zoological Research, 6, 423-429.
Li, W.X. \& Lan, J.H. (1992) A new genus and three new species Cyprinidae from Guangxi, China. Journal of Zhanjiang Fisheries College, 12, 46-51.
Li, W.X., Liao, Y.P. \& Yang, H.F. (2002) Two new species of Sinocyclocheilus from eastern Yunnan, China. Journal of Yunnan Agricultural University, 17, 161-163.
Li, W.X., Xiao, H., Zan, R.G., Luo, Z.Y., Ban, C.H. \& Fen, J.B. (2003) A new species of Sinocyclocheilus from caves in GuangXi. Journal of Guangxi Normal University, 21, 80-81.
Li, Z.Q., Guo, B.C., Li, J.B., He, S.P. \& Chen, Y.Y. (2008) Bayesian mixed models and divergence time estimation of Chinese cavefishes (Cyprinidae: Sinocyclocheilus). Science Bulletin, 53, 2342-2352. https://doi.org/10.1007/s11434-008-0297-2
Liang, X.F., Cao, L. \& Zhang, C.G. (2011) Molecular phylogeny of the Sinocyclocheilus (Cypriniformes: Cyprinidae) fishes in northwest part of Guangxi, China. Environmental Biology of Fishes, 92, 371-379. https://doi.org/10.1007/s10641-011-9847-6
Librado, P. \& Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452.
https://doi.org/10.1093/bioinformatics/btp187

Pan, X.F., Li, L., Yang, J.X. \& Chen, X.Y. (2013) Sinocyclocheilus xichouensis, a new species of golden-line fish from the Red River drainage in Yunnan, China (Teleostei: Cypriniformes). Zoological Research, 34, 368-373.
Peng, J.L., Wang, X.Z., Wang, D. \& He, S.P. (2009) Application of DNA barcoding based on the mitochondrial CO1 gene sequences in classification of Culter (Pisces: Cyprinidae). Acta Hydrobiologica Sinica, 33, 271-276. https://doi.org/10.3724/SP.J.1035.2009.00271
Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253-1256. https://doi.org/10.1093/molbev/msn083
Romero, A. (2001) Scientists prefer them blind: the history of hypogean fish research. Environmental Biology of Fishes, 62, 43-71.
https://doi.org/10.1023/A:1011830329016
Romero, A. \& Paulson, K.M. (2001) It's a wonderful hypogean life: a guide to the troglomorphic fishes of the world. Environmental Biology of Fishes, 62, 13-41. https://doi.org/10.1023/A:1011844404235
Romero, A., Zhao, Y.H. \& Chen, X.Y. (2009) The hypogean fishes of China. Environmental Biology of Fishes, 86, 211-278. https://doi.org/10.1007/s10641-009-9441-3
Ronquist, F. \& Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
Shan, X.H. \& Yue, P.Q. (1994) The study on phylogeny of the Sinocyclocheilus fishes (Cypriniformes: Cyprinidae: Barbinae). Zoological Research, 15, 36-44.
Swofford, D.L. (2003) PAUP*, Phylogenetic analysis using parsimony (* and other methods). Version 4.Ob10. Sinauer Associates, Sunderland, MA. [software]
Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585595.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. \& Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
Wang, D., Zhao, Y.H., Yang, J.X. \& Zhang, C.G. (2014) A new cavefish species from Southwest China, Sinocyclocheilus gracilicaudatus sp. nov. (Teleostei: Cypriniformes: Cyprinidae). Zootaxa, 3768 (5), 583-590. https://doi.org/10.11646/zootaxa.3768.5.5
Wang, D.Z., Chen, Y.Y. \& Li, X.Y. (1999) An analysis on the phylogeny of the genus Sinocyclocheilus. Acta Academiae Medicinae Zunyi, 22, 1-6. [in Chinese]
Wang, X.Z., Li, J.B. \& He, S.P. (2007) Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Molecular Phylogenetics and Evolution, 42, 157-170. https://doi.org/10.1016/j.ympev.2006.06.014
Xia, X. \& Xie, Z. (2001) DAMBE: software package for data analysis in molecular biology and evolution. Journal of Heredity, 92, 371-373. https://doi.org/10.1093/jhered/92.4.371
Xiao, H., Chen, S.Y., Liu, Z.M., Zhang, R.D., Li, W.X., Zan, R.G. \& Zhang, Y.P. (2005) Molecular phylogeny of Sinocyclocheilus (Cypriniformes: Cyprinidae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 36, 67-77. https://doi.org/10.1016/j.ympev.2004.12.007
Yang, Z.H. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586-1591. https://doi.org/10.1093/molbev/msm088
Zardoya, R. \& Meyer, A. (1996) Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Molecular Biology and Evolution, 13, 933-942. https://doi.org/10.1093/oxfordjournals.molbev.a025661
Zhao, Y.H. \& Zhang, C.G. (2006) Past research and future development on endemic Chinese cavefish of the genus Sinocyclocheilus (Cypriniformes: Cyprinidae). Acta Zootaxonomica Sinica, 31, 769-777.
Zhao, Y.H. \& Zhang, C.G. (2009) Endemic Fishes of Sinocyclocheilus (Cypriniformes: Cyprinidae) in China: Species diversity, Cave adaptation, Systematics and Zoogeography. Science Press, Beijing, 271 pp.
Zheng, H.F., Xiu, L.H. \& Yang, J. (2013) A new species of Barbine genus Sinocyclocheilus (Teleostei: Cyprinidae) from Zuojiang River drainage in Guangxi, China. Environmental Biology of Fishes, 96, 747-751. https://doi.org/10.1007/s10641-012-0068-4
Zhu, D.G., Zhu, Y. \& Lan, J.H. (2011) Description of a new species of Barbinae, Sinocyclocheilus huangtianensis from China (Teleostei: Cypinidae). Zoological Research, 32, 204-207.
SUPPLEMENTARY TABLE S1. The genetic distances among CYTB sequences of species of Sinocyclocheilus under the Kimura-2-parameter model.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	Intraspecific genetic distance
1	S. juuchengensis																							0.001
2	S. qiubeiensis (this study)	0.001																						0.001
3	S. maculatus	0.150	0.149																					
4	S. angustiporus	0.056	0.056	0.143																				-
5	S. guishanensis	0.058	0.058	0.149	0.040																			-
6	S. huaningensis	0.049	0.049	0.143	0.039	0.030																		-
7	S. lateristritus	0.069	0.069	0.138	0.066	0.064	0.060																	0.005
8	S. macrocephalus	0.053	0.053	0.142	0.034	0.028	0.018	0.059																0.002
9	S. malacopterus	0.051	0.051	0.143	0.037	0.023	0.033	0.057	0.031															0.005
10	S. oxycephalus	0.046	0.046	0.144	0.034	0.033	0.022	0.064	0.025	0.036														0.002
11	S. purpureus	0.052	0.053	0.139	0.040	0.042	0.035	0.060	0.035	0.037	0.042													0.010
12	S. yangzongensis	0.082	0.083	0.155	0.080	0.083	0.083	0.095	0.079	0.075	0.081	0.076												0.004
13	S. grahami	0.089	0.089	0.142	0.083	0.088	0.083	0.087	0.086	0.081	0.084	0.081	0.111											0.004
14	S. yimenensis	0.090	0.090	0.145	0.088	0.091	0.093	0.094	0.091	0.083	0.092	0.085	0.106	0.026										0.000
15	S. qiubeiensis (Li et al. 2008)	0.094	0.094	0.147	0.087	0.095	0.094	0.094	0.093	0.087	0.091	0.086	0.113	0.026	0.020									0.006
16	S. qujingensis	0.099	0.099	0.164	0.098	0.091	0.093	0.043	0.093	0.088	0.095	0.093	0.116	0.114	0.125	0.123								-
17	S. maitianheensis	0.100	0.100	0.147	0.091	0.093	0.089	0.094	0.091	0.087	0.092	0.086	0.100	0.062	0.069	0.072	0.119							-
18	S. anophthalmus	0.101	0.101	0.148	0.095	0.096	0.093	0.095	0.095	0.090	0.096	0.087	0.099	0.063	0.070	0.073	0.121	0.003						0.000
19	S. tingi	0.103	0.103	0.149	0.092	0.104	0.101	0.099	0.103	0.095	0.098	0.098	0.116	0.036	0.038	0.039	0.130	0.077	0.078					-
20	S. hyalinus	0.132	0.131	0.141	0.130	0.126	0.127	0.125	0.126	0.123	0.129	0.128	0.135	0.138	0.137	0.138	0.143	0.142	0.140	0.151				-
21	S. rhinocerous	0.132	0.131	0.134	0.134	0.129	0.131	0.121	0.128	0.126	0.131	0.130	0.150	0.136	0.141	0.141	0.138	0.142	0.143	0.151	0.065			0.000
22	Barbodes laticeps	0.173	0.172	0.164	0.163	0.161	0.164	0.166	0.161	0.161	0.166	0.167	0.174	0.162	0.167	0.169	0.146	0.167	0.168	0.175	0.157	0.159	0.000	-

S. qiubeiensis

S. jiuchengensis

SUPPLEMENTARY FIGURE S1. Comparison of the body squamation between two putative species of Sinocyclocheilus. Sinocyclocheilus qiubeiensis (left) possesses tiny scales irregularly arranged and incompletely covering the body, with most of the scales concentrated on the dorsal and ventral sides of the lateral line. Sinocyclocheilus jiuchengensis (right) possesses dense scales regularly arranged and completely covering the body.

[^0]: 130 Accepted by P. Ciccotto: 17 May 2018; published: 13 Sept. 2018
 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0

