Acanthagrion viridescens (Odonata: Coenagrionidae): description of the final larval stadium and biological notes

YEISSON GUTIÉRREZ¹,², HEMERSON L. FREITAS¹ & EUGÊNIO E. OLIVEIRA¹,²
¹Departamento de Entomologia, Universidade Federal de Viçosa, Minas Gerais
²Corresponding authors. E-mails: gutierrez.yeisson@gmail.com; eugenio@ufv.br

Abstract

The development of the nymphal stages of Acanthagrion viridescens Leonard was examined under laboratory conditions. Based on specimens collected in Minas Gerais state (Brazilian Southeastern Region), we described and illustrated the last-instar nymph and illustrated the egg and other nymphal stages. The nymphs of A. viridescens went through 11 instars, each of them with an average duration of approximately 13 days. The combinations of the following characteristics distinguish the last-instar nymph of A. viridescens from congeners: prementum with 2+1 setae in each side; labial palp with six apical denticles; mandibular formula L 1+2 3 4 5 y a, R 1+2 3 4 5 y-a b; presence of trifid spine in the ventral distal region of the tibia and in the tarsi; format of the male and female gonapophyses; and the distinctive pattern of the tracheae in the caudal gills. This also represents the first record of this species from southeastern Brazil.

Key words: damselflies, aquatic insects, life cycle, taxonomy

Introduction


Acanthagrion viridescens Leonard, 1977, was described based on adult males and females collected at the Madeira River, near the Bolivian border in the county of Porto Velho, Rondônia State, Brazil. It belongs to a group of related species named the viridescens group, which range from the Colombian Andes through Ecuador, Peru, and Bolivia to the lowlands of Paraguay and southeastern Brazil (Leonard 1977). However, the immature stages of this species remained unknown (Lencioni 2006).

Describing the early instars of Odonata species is important to provide data for comparative ontogenetic studies and to make possible the identification of small nymphs in the field (Corbet 2002). Thus, by providing the description of the last-instar nymph of A. viridescens and illustrating all earlier stages attempt to fill this knowledge gap. Furthermore, by evaluating the developmental time of these stages under laboratory conditions, we provide new information that may have ecological, genetic, taxonomic and/or applied implications (e.g. biological control of mosquitoes as demonstrated at Saha et al. 2012).