Reappraisal of the Javanese Bullfrog complex, *Kaloula baleata* (Müller, 1836) (Amphibia: Anura: Microhylidae), reveals a new species from Peninsular Malaysia

KIN ONN CHAN¹, L. LEE GRISMER² & RAFE M. BROWN¹

¹Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7561, USA. E-mail: chanko@ku.edu
²Department of Biology, La Sierra University, 4500 Riverwalk Parkway, Riverside, California, 92515, USA

Abstract

A new species of Narrow-mouthed frog of the genus *Kaloula* is described from northern Peninsular Malaysia. *Kaloula latidisca* sp. nov. is genetically and morphologically most similar to *K. baleata* and *K. indochinensis* but differs from those and other congeners by the unique combination of the following characters: (1) adult males SVL 49.2–56.2 mm (x̄=53.5 ± 3.0; N=4); (2) finger tips expanded into large, transversely expanded discs (disc width 2.8–3.1 mm, x̄=3.0 ± 0.1); (3) inner metatarsal tubercle large, oval, distinctly raised, slightly shorter than first toe; (4) three subarticular tubercles on fourth toe; (5) toe webbing formula: I 1–2 II 1–3 III 2–3.5 IV 4–2 V; and (6) yellow to orange irregularly shaped patch on the axillary, inguinal and posterior region of thigh.

Key words: morphology, multivariate, statistics, systematics, taxonomy

Introduction

Recent re-evaluations of widespread amphibian and reptile species complexes in Southeast Asia have revealed a staggering amount of hidden diversity. Many of these previously widespread species have been shown to comprise complexes of distinct lineages with more restricted distributions (eg. Chan & Grismer 2010; Chan et al. 2011; Chan et al. 2013; Grismer et al. 2012a,b; Johnson et al. 2012; Matsui et al. 2010; McLeod 2010; Sumontha et al. 2012; Wood et al. 2009). The Javanese Bullfrog complex, *Kaloula baleata*, is a widespread microhydrid frog that has been reported from Vietnam (Nguyen 2009; Orlov et al. 2002), Laos (Teynié et al. 2004), Thailand (Pauwels et al. 2000), Peninsular Malaysia (Berry 1975; Chan et al. 2010), Borneo (Inger & Stuebing 2005; Das & Kraus 2007), Indonesia (Iskandar 1998), and Palawan Island in the Philippines (Diesmos & Brown 2011; Taylor 1920), with a subspecies *K. baleata goshi* reported from Little and South Andaman Islands, India (Das & Dutta 1998). In a study on adaptive radiation of *Kaloula* in the Philippines, Blackburn et al. (2013) showed that the *K. baleata* complex formed a monophyletic group that consisted of at least five genetically distinct lineages i.e. the true *K. baleata* from Java and four other lineages from Vietnam, Peninsular Malaysia, Palawan, and Sulawesi (Fig. 1). The Vietnamese lineage (conspecific with Laos and Cambodian populations) was subsequently described as a new species, *K. indochinensis*, based on genetic divergence and phenotypic differentiation (Chan et al. 2013). In this study, we evaluate the northern Peninsular Malaysian lineage under a similar framework to determine whether this genetically divergent population could also be morphologically differentiated from its closest described relatives, *K. baleata* and *K. indochinensis*. We further compared the northern Peninsular Malaysian lineage with all other congeners to demonstrate that this lineage possesses a unique suite of morphological characters that set it apart from the true *K. baleata* and all other species of *Kaloula*. 
presented, which would require this action. Additionally, given their phylogenetic affinity (Fig. 1), we provisionally recommend the identification of these populations as K. cf. baleata, pending the acquisition of additional data that may definitively resolve their taxonomic placement.

As the rapid pace of species discovery continues in Southeast Asia (Brown & Stuart 2012), the targeted multitaxon comparisons of patterns of diversification across geographical barriers of Sundaland will become increasingly desired. Like Wallace’s Line and the Isthmus of Kra, marine channels between Peninsular Malaysia, Sumatra, Java, and Borneo clearly have influenced evolutionary processes of diversification in Sundaland amphibians (Inger 1999). Great strides towards accurate realization of the regions of amphibian species diversity could be achieved by a research program focused on co-distributed lineages throughout the islands of the Sunda Shelf.

Acknowledgements

We thank Bryan Stuart and Dave Blackburn for stimulating discussions regarding taxonomy of Kaloula and Cameron Siler for critical review of a previous draft of the manuscript. During the preparation of this paper, RMB was supported by NSF DEB 1418895. Thanks to Jeet Sukumaran and Jesse Grismer for collecting the type series.

References

http://dx.doi.org/10.1111/evo.12145
http://dx.doi.org/10.1655/HERPETOLOGICA-D-12-00094
http://dx.doi.org/10.1046/j.1365-2656.2001.00524.x


