A new green anole lizard of the "Dactyloa" clade (Squamata: Dactyloidae) from the Magdalena river valley of Colombia

JULIÁN A. VELASCO¹ & JUAN PABLO HURTADO-GÓMEZ²

¹Laboratorio de Análisis Espaciales. Departamento de Zoología. Instituto de Biología. Universidad Nacional Autónoma de México. México. D.F. E-mail: juvelas@gmail.com
²Grupo Herpetológico de Antioquia and Museo de Herpetología, Universidad de Antioquia. Medellin, Colombia. E-mail: juanphg@gmail.com

Abstract

We describe a new species of Anolis from the Magdalena river valley in Colombia. The new species is morphologically similar to Anolis ibanezi and A. chocorum, but differs in body and dewlap color, and head scalation. We performed an exploratory multivariate analysis based on 15 morphological characteristics of the new species and A chocorum and found that differences between both species are mainly associated with head dimensions. A phylogenetic analysis based on morphological characters suggests that the new species is nested within the "Dactyloa" clade of Anolis. Finally, we discuss phylogenetic relationships and biogeographical affinities based in its distribution.

Key words: Anolis, taxonomy, Phylogenetics, morphology, Colombia, Magdalena river valley

Introduction

The lizard genus Anolis (sensu lato) is composed of 388 species (Uetz & Hosek 2013), with many new species described every year (e.g., Ayala-Varela & Omar 2010; Vesely 2010; Lotzkat et al. 2011). In particular for South America, Anolis lizards are poorly known and many species are known from single specimens (e.g., A. ibague Williams 1975; A. propriquus Williams, 1984). Recent fieldwork and study of herpetological collections in South America has resulted in the discovery of new species (e.g., A. otongae Ayala-Varela & Velasco 2010, and A. anoriensis Velasco, et al. 2010) and improvement in our knowledge of species distributions (Torres-Carvajal et al. 2010; Ayala-Varela et al. 2011).

The anoline fauna in South America is composed of two clades, “Dactyloa” (Castañeda & de Queiroz 2011) and Norops (Nicholson 2002). Although these clades recently were recognized as genera by Nicholson et al. (2012), we reject this classification scheme because it leads to taxonomic instability, as was pointed out by Poe (2013). Instead, we prefer to use these names as clade names inside the Anolis radiation. “Dactyloa” is sister group...
Our morphometric analyses suggested that the females of *Anolis limon* and *Anolis chocorum* differs mainly in head variables (see Table 2 and Figure 5). These morphological differences likely are associated to differences in diet and bite force (Herrel et al. 2001a; b), reflecting niche partitioning between species (Harmon et al. 2005).

The distribution of *Anolis limon* is restricted to the middle Magdalena region of Colombia (Figure 5). This restricted distribution provide additional support for the hypothesis that Magdalena region is an endemism area (Hernández-Camacho et al. 1992; Morrone 2001). Several species are known to be restricted to this region, like monkeys (e.g., *Saguinus leucopus* Günther 1877), birds (e.g., *Capito hypoleucus* Salvin 1897), frogs (e.g., *Agalychnis terranova* Rivera, Duarte, Rueda & Daza, 2013; *Allobates niputidea* Grant, Acosta & Rada 2007; *Dendrobates truncatus* Cope 1861), turtles (e.g., *Podocnemis lewyana* Duméril 1852) and other anole species (e.g., *A. ibague* Williams 1975).

The discovery of this new species highlights the need for extensive work with Colombian anoles. Additional research in Colombian herpetological collections supplemented by extensive fieldwork at several sites across the country likely will allow the discovery of new anole taxa. With the description of *Anolis limon* we have added another species to the Colombian anole fauna for a total of 75 species (Uetz & Hosek 2013). Despite limited sampling effort dedicated to anoles in Colombia, in comparison with other regions (e.g., Greater Antilles) Colombia has the highest anole diversity of any country (Uetz & Hosek 2013). The high diversity of *Anolis* species in Colombia offers an excellent opportunity for addressing evolutionary and ecological questions (see Molina-Zuluaga & Gutiérrez-Cárdenas 2007; Velasco & Herrel 2007; Calderón-Espinosa & Barragán-Forero 2011; Calderón-Espinosa et al. 2013; Moreno-Arias & Urbina-Cardona 2013). We encourage herpetologists to conduct biological studies focused on Colombian anole species. Such studies will contribute to a greater understanding of the ecological and evolutionary causes of the high diversity in Colombia.

Acknowledgements

The authors would like to thank the following individuals for their help and assistance: Vivian Páez, Paul D. Gutierrez and Juan M. Daza (MHUA), Enrique Castillo (IAvH), John D. Lynch (ICN), Luis Coloma and Fernando Ayala-Varela (QCAZ), Mario Yanez Muñoz (MECN) and Ana Almendariz (EPN) for the specimens loan and provide work space. We are grateful with Steven Poe, Margarita Ramos, Omar Torres-Carvajal, Wesley Chun and Alejandro Montoya for providing photographs of some *Anolis* species. We are very grateful to Steven Poe for share his datasets, provide extensive comments and for checking the English grammar. In addition, we are grateful with Gunther Kohler and an anonymous reviewer for comments and suggestions that improved this paper. Julián A. Velasco is a graduate student in Posgrado en Ciencias Biológicas at Universidad Nacional Autónoma de México, and is supported by a graduate scholarship from the Consejo Nacional de Ciencia y Tecnología CONACYT.

Literature cited


http://dx.doi.org/10.3897/zookeys.53.456


http://dx.doi.org/10.2994/057.006.0306
http://dx.doi.org/10.1111/j.1365-2699.2004.01222.x
http://dx.doi.org/10.2307/1467021
http://dx.doi.org/10.11646/zootaxa.3626.2.7
http://dx.doi.org/10.11646/zootaxa.3636.1.4
http://dx.doi.org/10.1163/156853889x00142
http://dx.doi.org/10.1111/j.1095-8312.2007.00885.x
http://dx.doi.org/10.1371/journal.pone.0042925
http://dx.doi.org/10.2307/2412809