Orchid bees (Hymenoptera: Apidae) of the Brazilian Atlantic Forest

ANDRÉ NEMÉSIO

Magnolia Press
Auckland, New Zealand
Orchid bees (Hymenoptera: Apidae) of the Brazilian Atlantic Forest
ANDRÉ NEMÉSIO
(Zootaxa 2041)
242 pp.; 30 cm.
16 Mar. 2009
ISBN 978-1-86977-341-0 (paperback)
ISBN 978-1-86977-342-7 (Online edition)
Orchid bees (Hymenoptera: Apidae) of the Brazilian Atlantic Forest

ANDRÉ NEMÉSIO

1Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Caixa Postal 486, Belo Horizonte, MG 30.161-970, Brazil. E-mail: andre.nemesio@gmail.com

Table of contents

Abstract ............................................................................................................................................................................. 5
Introduction ........................................................................................................................................................................ 5
Methodology ..................................................................................................................................................................... 9
Results ............................................................................................................................................................................. 16
Identification key for genera of Euglossina occurring in the Atlantic Forest ................................................................ 28

1. Genus Eufriesea Cockerell, 1908 .................................................................................................................................... 28
Identification key for species of Eufriesea occurring in the Atlantic Forest .............................................................. 29
The Eufriesea auriceps problem .................................................................................................................................... 29
The Eufriesea dentilabris problem ................................................................................................................................ 40
The Eufriesea surinamensis problem ............................................................................................................................. 42
1.1. Eufriesea aeneiventris (Mocsáry, 1896) ..................................................................................................................... 49
1.2. Eufriesea atlantica Nemésio, 2008 .......................................................................................................................... 52
1.3. Eufriesea auriceps (Friese, 1899) .......................................................................................................................... 54
1.4. Eufriesea brasiliarum (Friese, 1899) ......................................................................................................................... 55
1.5. Eufriesea dentilabris (Mocsáry, 1897) ....................................................................................................................... 58
1.6. Eufriesea mussitana (Fabricius, 1787) ...................................................................................................................... 60
1.7. Eufriesea nigrohirta (Friese, 1899) ........................................................................................................................ 61
1.8. Eufriesea saraçudina (Perty, 1833) ........................................................................................................................ 64
1.9. Eufriesea surinamensis (Linnaeus, 1758) ................................................................................................................ 66
1.10. Eufriesea violacea (Blanchard, 1840) .................................................................................................................... 69

2. Genus Euglossa Latreille, 1802 .................................................................................................................................... 73
Identification key for species of Euglossa occurring in the Atlantic Forest .................................................................. 74
The Euglossa chalybeata problem ................................................................................................................................ 75
The Euglossa cordata problem ....................................................................................................................................... 77
The Euglossa crassipunctata problem ........................................................................................................................... 85
The Euglossa fimbriata problem .................................................................................................................................... 87
The Euglossa hemichlora problem .................................................................................................................................... 90
The Euglossa pictipennis problem ................................................................................................................................... 92
The Euglossa stelfeldi problem ...................................................................................................................................... 93
The Euglossa townsendi problem .................................................................................................................................. 98
2.1. Euglossa analis Westwood, 1840 ............................................................................................................................. 102
2.2. Euglossa anodorhynchi Nemésio, 2006 .................................................................................................................... 104
2.3. Euglossa aratinga Nemésio, sp. n. .......................................................................................................................... 106
2.4. Euglossa augaspis Dressler, 1982 ........................................................................................................................ 108
2.5. Euglossa avicula Dressler, 1982 ........................................................................................................................... 109
2.6. Euglossa carinilabris Dressler, 1982 ....................................................................................................................... 110
2.7. Euglossa carolina Nemésio, sp. n. .......................................................................................................................... 111
2.8. Euglossa cognata Moure, 1970 .............................................................................................................................. 113
2.9. Euglossa crassipunctata Moure, 1968 ...................................................................................................................... 114
2.10. Euglossa cyanochlora Moure, 1996 ...................................................................................................................... 116

Accepted by L. Packer: 24 Nov. 2008; published: 16 Mar. 2009
Abstract

A detailed synopsis of all the orchid-bee species known to occur in the Atlantic Forest Domain, eastern Brazil, is provided, including synonymy, complete type data, diagnoses, relevant data on biology and geographic distribution (with detailed localities of known occurrence of each species), colorful illustrations of onomatophores (“name-bearing type specimens”), and a list with the main references dealing with each species. Fifty-four species are recognized to occur in the Atlantic Forest Domain. Identification keys are presented for each genus and their species occurring in the Atlantic Forest. Euglossa carinilabris Dressler, 1982, Euglossa cyanaspis Moure, 1968, Eulaema (Eulaema) niveofasciata (Friese, 1899) and Exaerete lepeleitleri Oliveira & Nemésio, 2003, considered junior synonyms of other species by different authors, are reinstated as valid species. A full discussion on the status of the four orchid-bee species described by Linnaeus is provided, as well as colorful illustrations of the four onomatophores. The two existing onomatophores of orchid bee species described by Fabricius are also illustrated and his Apis cingulata has been shown to be the species recently described as Eulaema (Apuleaema) pseudocingulata Oliveira, 2006, which, thus, becomes a junior synonym (syn. n.). Euglossa aratingae sp. n., Euglossa carolina sp. n., Euglossa nanomalanotricha sp. n., Euglossa roderici sp. n., Euglossa roubiki sp. n., Eulaema (Eulaema) atleticana sp. n., and Eulaema (Apuleaema) marci sp. n. are described as new species. Neotypes are designated for Eufriesea violacea (Blanchard, 1840) and Exaerete frontalis (Guérin-Méneville, 1844). Some corrections concerning the repository institutions of some onomatophores of orchid bees were also made: Eufriesea auriceps (Friese, 1899) holotype has been listed as belonging to the US National Museum (Washington) or to the American Museum of Natural History (New York) but, in fact, it belongs to the Zoologisches Museum der Humboldt Universität (Berlin); the lectotype of Eufriesea aeneiventris (Mocsáry, 1896) has been listed as belonging to the Istituto e Museo di Zoologia, Universita di Torino (Turin), but it actually belongs to the Hungarian Museum of Natural History (Budapest). Publication dates of both Exaerete frontalis Guérin-Méneville and Exaerete smaragdina Guérin-Méneville have been listed as 1845 but, in fact, the actual date is 1844. Based on the known geographic distribution and abundance of each species in orchid-bee inventories, IUCN criteria were applied and three species are recommended to be included in future lists of threatened species in one of the IUCN categories of risk: Eufriesea brasiliarianorum (Friese, 1899) and Euglossa cognata Moure, 1970 are suggested to be listed as “vulnerable”, and Euglossa cyanocholora Moure, 1996 is suggested to be listed as “endangered”. A fully annotated check list of all known orchid bee species is also presented as an Appendix.

Key words: aromatic baits, conservation, Euglossina, geographic distribution, nests, new species, synonymy, taxonomy

Introduction

Orchid bees (Hymenoptera: Apidae: Apini: Euglossina) are endemic to the Neotropics, occurring naturally from northern Mexico to northern Argentina (Moure 1967b, 2003; Roubik & Hanson 2004) with odd vagrant specimens collected in the southern United States (Minckley & Reyes 1996), and a species recently introduced into Florida (Skov & Wiley 2005, Pemberton & Wheeler 2006). Michener (2000, 2007) and most modern authors outside Brazil (e. g. Dressler 1982b, Kimsey 1982, Kimsey & Dressler 1986, Engel 1999, Cameron 2004, Roubik 2004, Bembé 2004b, 2007) have treated orchid bees as a tribe: Euglossini. The alternative classification, proposed by Roig-Alsina in Roig-Alsina & Michener (1993), treats orchid bees as a subtribe Euglossina and this classification has been adopted by most Brazilian authors, especially after the work by Silveira et al. (2002) which adopted the subtribal classification rank for orchid bees. I favor Roig-Alsina’s proposition and adopt subtribal rank for orchid bees in this paper.

Although orchid bees were known in Linnaean times—four species were described by Linnaeus (1758) himself, three of them [Eufriesea surinamensis, Euglossa cordata, and Exaerete dentata (all described as Apis)] currently recognized as valid—it was only after the mid-19th century that the number of known species began to increase, especially after the works by Mocsáry [1896, 1897, 1898, 1899 (in Friese 1899), 1908] and Friese (1899, 1900, 1903, 1904, 1912, 1916, 1921,1922, 1923a, b, 1925, 1930, 1940). These two authors described 36 species of Eufriesea, 25 of which are currently recognized as valid. Friese described another 15 species of Euglossa (13 currently valid), 12 species of Eulaema (eight currently valid), and one valid species of Exaerete. It was from the 1960s on, however, when the floral fragrances which attract male orchid bees were discovered and synthesized (see Dodson et al. 1969), that the true diversity of euglossines—especially Euglossa—began to be fully understood. Moure alone (1943, 1947, 1950, 1960c, 1966,1965, 1967, 1968, 1969, 1970, 1976, 1978, 1989, 1996, 1999, 2003) or in association with other entomologists (e. g. Sakagami et al. 1967, Rebêlo & Moure 1996, Moure et al. 2001, Moure & Schindwein 2002) played the largest role in recognizing this diversity and described 54 orchid-bee species (Urban 2003)—thirty-nine Euglossa, nine Eufriesea, five Eulaema, and one Exaerete, most of them currently recognized as valid. He also proposed several arrangements for superspecific groupings of these bees (e. g. Moure 1943, 1950, 1968, 1989). Moure’s contribution in the taxonomy of Euglossina is obvious, considering that there are ca. 200 orchid-bee species currently recognized as valid. Finally, Dressler’s (1978, 1982b, c, d) contribution to Euglossa taxonomy was also noticeable, although this author described many species already recognized by Moure (1967b) and, unfortunately, designated as type specimens bees deposited in Washington, instead of respecting the countries of origin of such specimens, which would have made the study of these specimens much easier by those living in the region where the bees occur.