The insect Order Thysanoptera: Classification versus Systematics*

LAURENCE A. MOUND1 & DAVID C. MORRIS2

1Honorary Research Fellow, CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia
2Postdoctoral Fellow, Department of Botany and Zoology, Australian National University, Canberra, Australia

Table of contents

Abstract ... 395
Introduction .. 396
Order, Superorder or Suborder .. 396
Sub-ordinal classification of Thysanoptera 397
Supra-generic classification of Tubulifera 398
Phlaeothripinae classification by Priesner 399
Phlaeothripinae classification by Bhatti 400
Phlaeothripinae classification by Stannard 401
Supra-generic classification of Terebrantia 402
Lower families of Terebrantia ... 402
Relationships within Aeolothripidae 403
Intermediate families of Terebrantia 404
Relationships within Thripidae ... 405
Considerations from molecular data 406
Acknowledgements ... 410
References .. 410

Abstract

Two widely different classifications of the insect order Thysanoptera are discussed; an essentially phylogenetic system recognizing nine families in two suborders, and an essentially phenetic system recognizing 40 families in two orders. This paper emphasizes the distinction between “classification” and “systematics”, the former stressing the importance of differences, whereas the latter stresses the importance of derived similarities. A phylogenetic (i.e. systematic) classification incorporates predictions concerning evolutionary relationships that are important throughout biological studies, whether in host and parasite associations, biogeography, comparative physiology or development. The available phenetic classification of Thysanoptera serves no such broader purpose in biology. Recent molecular data derived from the gene 18S rDNA are analysed, but although some groups of taxa are well resolved, the deep relationships within the Thysanoptera remain unclear.

Key words: Thysanoptera, systematics, classification, phylogeny, 18S rDNA