Skip to main content Skip to main navigation menu Skip to site footer
Article
Published: 2022-09-30

Descriptions of three new diatom species in the genus Eunotia (Eunotiaceae, Bacillariophyta) from the Eocene Arctic

Connecticut College, Botany Department, New London, CT, U.S.A. 06320
Connecticut College, Botany Department, New London, CT, U.S.A. 06320
Connecticut College, Botany Department, New London, CT, U.S.A. 06320
acidic ecology freshwater Giraffe Pipe new species raphe Algae

Abstract

Eunotia is the largest and most diverse genus within the family Eunotiaceae, a primarily freshwater group of diatoms often found in dilute, acidic and humic-stained environments. Species in this genus are characterized by being asymmetric along their apical axis, symmetric about the transapical axis, and with a simple and reduced raphe system situated largely on the mantle and restricted to the apical ends of the valve. In addition, Eunotia taxa have one or more rimoportula per valve, usually close to the apex. Because of their reduced raphe system, coupled with the presence of rimoportulae, Eunotia and its relatives are often viewed as the oldest lineage of raphe-bearing diatoms. To date, the oldest remains of Eunotia species have been reported from the early to middle Eocene, including from the Giraffe Pipe locality, an ancient Eocene fossil site located in northern Canada near the Arctic Circle. Rocks from this site contain a large and diverse assemblage of Eunotia taxa. The purpose of this study is to begin to characterize this assemblage with descriptions of three new species, Eunotia giraffensis sp. nov., E. petasum sp. nov. and E. pseudonaegelii sp. nov. The new species, representing the longest specimens found at the Giraffe Pipe locality, each possess characteristics common to Eunotia making them easily assigned to this genus. Because the Eunotia lineage was well established by the early part of the Eocene, it is likely to be significantly older.

References

  1. Alles, E., Nörpel-Schempp, M. & Lange-Bertalot, H. (1991) Zur systematic und Ökologie charakteristischer Eunotia-Arten (Bacillariophyceae) in elektrolytarmen Bachoberläufen. Nova Hedwigia 53: 171–213.

  2. Ambwani, K., Sahni, A. & Dutta, D. (2003) Oldest known non-marine diatoms (Aulacoseira) from the uppermost Cretaceous Deccan Intertrappean beds and Lameta Formation of India. Revue de Micropaleontologie 46: 67–71. https://doi.org/10.1016/S0035-1598(03)00011-4

  3. Barber, A., Siver, P.A. & Karis, W. (2013) Euglyphid testate amoebae (Rhizaria: Euglyphida) from an Arctic Eocene waterbody: Evidence of evolutionary stasis in plate morphology for over 40 Million years. Protist 164: 541–555. https://doi.org/10.1016/j.protis.2013.05.001

  4. Benson, M.E., Kociolek, J.P., Spaulding, S.A. & Smith, D.A. (2012) Pre-Neogene non-marine diatom biochronology with new data from the late Eocene Florissant Formation of Colorado, USA. Stratigraphy 9: 131–152.

  5. Bourrelly, P. & Manguin, É. (1952) Algues d’eau douce de la Guadeloupe et dépendances: recueillies par la Mission P. Allorge en 1936. Société d’Édition d’Enseignement Superiéur, Paris, 282 pp.

  6. Brown, J.W. & Sorhannus, U. (2010) A molecular genetic timescale for the diversification of autotrophic Stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. Plos One 5 (9): e12759. https://doi.org/10.1371/journal.pone.0012759

  7. Burliga, A.L., Torgan, L.C. & Beaumord, A.C. (2007) Eunotia ariengae sp. nov., an epilithic diatom from Brazilian Amazon. Diatom Research 22: 247–253. https://doi.org/10.1080/0269249X.2007.9705714

  8. Camburn, K.E. & Charles, D.F. (2000) Diatoms of low-alkalinity lakes in the northeastern United States. Special Publication 18: The Academy of Natural Sciences of Philadelphia, Scientific Publications, Philadelphia. 152 pp.

  9. Chacón-Baca, E., Heraldi-Campesi, H., Cevallos-Ferriz, S.R.S., Knoll, A.H. & Golubic, S. (2002) 70 Ma nonmarine diatoms from northern Mexico. Geology 30: 279–281.

  10. Cleve [Cleve-Euler], A. (1895) On recent freshwater diatoms from Lule Lappmark in Sweden. Bihang till Kongliga Svenska Vetenskaps-Akademiends Handlingar 21: 1–44.

  11. Conrad, W. (1938) Notes portistologiques 1. Mallomonas lychenensis, n. sp. Bulletin du Musée Royal d’Histoire Naturelle de Belgique 14 (20): 1–4.

  12. Costa, L.F., Wetzel, C.E., Lange-Bertalot, H., Ector, L. & Bicudo, D.C. (2017) Taxonomy and ecology of Eunotia species (Bacillariophyta) in southeastern Brazilian reservoirs. Bibliotheca Diatomologica 64: 1–302.

  13. Ehrenberg, C.G. (1837) Über ein aus fossilen Infusorien bestehendes, 1832 zu Brod verbacknes Bergmehl von den Grenzen Lapplands In: Schweden. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königl. Preuß. Akademie der Wissenschaften zu Berlin 1837: 43–45.

  14. Farooqui, A., Aggarwal, N., Jha, N. & Phartiyal, B. (2015) Oldest record of freshwater diatom frustules in tests of Permian thecamoebians: faithfulness of sedimentary record. International Journal of Current Microbiology and Applied Sciences 4: 472–485.

  15. Flower, R.J. (1989) A new variety of Tabellaria binalis (Ehrenb.) Grunow from several acid lakes in the U.K. Diatom Research 4: 21–23. https://doi.org/10.1080/0269249X.1989.9705048

  16. Gaiser, E.E. & Johansen, J. (2000) Freshwater diatoms from Carolina bays and other isolated wetlands on the Atlantic coastal plain of South Carolina, U.S.A., with descriptions of seven taxa new to science. Diatom Research 15: 75–130. http://dx.doi.org/10.1080/0269249X.2000.9705487

  17. Guiry, M.D. & Guiry, G.M. (2022) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: https://www.algaebase.org (accessed 28 February 2022).

  18. Kingston, J.C. (2003) Araphid and monoraphid diatoms. In: Wehr, J.D. & Sheath, R.G. (Eds.) Freshwater Algae of North America. Academic Press, New York, pp. 595–636.

  19. Kociolek, J.P. & Rhode, K. (1998) Raphe vestiges in “Asterionella” species from Madagascar: evidence for a polyphyletic origin of the araphid diatoms? Cryptogamie Algologie 19: 57–74.

  20. Kützing, F.T. (1849) Species algarum. Lipsiae [Leipzig]: F.A. Brockhaus. pp. [i]–vi, [1]–922.

  21. Lange-Bertalot, H. & Metzeltin, D. (1996) Indicators of oligotrophy – 800 taxa representative of three ecologically distinct lake types, carbonate buffered – oligodystrophic – weakly buffered soft water. In: Lange-Bertalot, H. (ed.) Iconographia Diatomologica 2: 1–390.

  22. Lange-Bertalot, H. & Metzeltin, D. (2009) A dystrophic mountain lake in Panama – hot spot of new and rare neotropical diatoms. Nova Hedwigia, Beiheft 135: 137–165.

  23. Lange-Bertalot, H., Bak, M. & Witkowski, A. (2011) Eunotia and some related genera. In: Lange-Bertalot, H. (ed.) Diatoms of Europe. Vol. 3. Koeltz Scientific Books, Königstein, pp. 1–358.

  24. Lewis, F.W. (1864) On some new and singular intermediate forms of Diatomaceae. Proceedings of the Academy of Natural Sciences of Philadelphia 15: 336–346. 

  25. Lohman, K.E. & Andrews, G.W. (1968) Late Eocene nonmarine diatoms from the Beaver Divide Area, Fremont County, Wyoming. U. S. Geological Survey Professional Paper 593-E: 24.

  26. Mann, D.G. (1984) An ontogenetic approach to diatom systematic. In: Mann, D.G. (Ed.) Proceedings of the 7th International Symposium on Living and Fossil Diatoms. Koeltz Scientific Books, Königstein, pp. 131–141.

  27. Marsicano, L.J. & Siver, P.A. (1993) A paleolimnological assessment of lake acidification in five Connecticut lakes. Journal of Paleolimnology 9: 209–221. https://doi.org/10.1007/BF00677214

  28. Mayama, S. & Kobayasi, H. (1991) Observations of Eunotia arcus Ehr., type species of the genus Eunotia (Bacillariophyceae). Japanese Journal of Phycology 39: 131–141.

  29. Medlin, L.K. (2016) Evolution of the diatoms: major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia 55: 79–103. https://doi.org/10.2216/15-105.1

  30. Medlin, L.K. & Kaczmarska, I. (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43: 245–270. https://doi.org/10.2216/i0031-8884-43-3-245.1

  31. Melo, S., Torgan, L.C. & Raupp, S.V. (2010) Actinella species (Bacillariophyta) from an Amazon blackwater floodplain lake (Amazonas-Brazil). Acta Amazonica 40: 269–274. https://doi.org/10.1590/S0044-59672010000200004

  32. Metzeltin, D. & Lange-Bertalot, H. (1998) Tropical diatoms of South America I. Iconographia Diatomologica 5: 1–695.

  33. Metzeltin, D. & Lange-Bertalot, H. (2002) Diatoms from the “Island Continent” Madagascar. In: Lange-Bertalot, H. (ed.) Iconographia Diatomologica 11: 1–286.

  34. Metzeltin, D. & Lange-Bertalot, H. (2007) Tropical diatoms of South America II. Iconographia Diatomologica 18: 1–877.

  35. Migula, W. (1905) Kryptogamen-Flora von Deutschland, Deutsch-Österreich und der Schweiz. Band II. Algen. 1. Teil. Cyanophyceae, Diatomaceae, Chlorophyceae. Berlin: H. Bergmühler, 208 pp.

  36. Novitski, L. & Kociolek, J.P. (2005) Preliminary light and scanning electron microscope observations of marine fossil Eunotia species with comments on the evolution of the genus Eunotia. Diatom Research 20: 137–143. http://dx.doi.org/10.1080/0269249X.2005.9705623

  37. Pisera, A., Siver, P.A. & Wolfe, A.P. (2013) A first account of freshwater Potamolepid (Demospongiae, Spongillina, Potamolepidae) from the Middle Eocene: Biogeographic and paleoclimatic implications. Journal of Paleontology 87: 373–378. https://doi.org/10.1666/12-079.1

  38. Pisera, A. Manconi, R., Siver, P.A. & Wolfe, A.P. (2016) The sponge genus Ephydatia from the high-latitude middle Eocene: environmental and evolutionary significance. Paläontologische Zeitschrift 90: 673–680. https://doi.org/10.1007%2Fs12542-016-0328-2

  39. Ross, R., Cox, E.J., Karayeva, N.I., Mann, D.G., Paddock, T.B.B., Simonsen, R. & Sims, P.A. (1979) An amended terminology for the siliceous components of the diatom cell. Nova Hedwigia, Beiheft 64: 513–533.

  40. Round, F.E., Crawford, R.M. & Mann, D.G. (1990) The diatoms. Biology and morphology of the genera. Cambridge University Press, Cambridge, 747 pp.

  41. Sabbe, K., Vanhoutte, K., Lowe, R.L., Bergey, E.A., Biggs, B.J.F., Francoeur, S., Hodgson, D. & Vyverman, W. (2001) Six new Actinella (Bacillariophyta) species from Papua New Guinea, Australia and New Zealand: further evidence for widespread diatom endemism in the Australasian region. European Journal of Phycology 36: 321–340.

  42. Siemińska, J. (2000) The discoveries of diatoms older than the Cretaceous. In: Witkowski, A. & Siemińska, J. (Eds.) The origin and early evolution of the diatoms: fossil, molecular and biogeographical approaches. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow. pp. 55–74.

  43. Siemińska, J. & Kwiecińska, B. (2000) The Proterozoic diatoms from the Przeworno marbles. In: Witkowski, A. & J. Siemińska, J. (Eds.) The origin and early evolution of the diatoms: fossil, molecular and biogeographical approaches. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow, pp. 97–121.

  44. Sims, P.A., Mann, D.G. & Medlin, L.K. (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45: 361–402. https://doi.org/10.2216/05-22.1

  45. Singh, R.S., Stoermer, E.F. & Kar, R. (2006) Earliest freshwater diatoms from the Deccan Intertrappean sediments of India. Micropaleontology 52: 545–551. http://dx.doi.org/10.2113/gsmicropal.52.6.545

  46. Siver, P.A. (2013) Synura cronbergiae sp. nov, a new species described from two Paleogene maar lakes in northern Canada. Nova Hedwigia 97: 179–187. https://doi.org/10.1127/0029-5035/2013/0108

  47. Siver, P.A. (2015) Mallomonas schumachii sp. nov., a fossil synurophyte bearing large scales described from an Eocene maar lake in Northern Canada. Nova Hedwigia 101: 285–298. http://dx.doi.org/10.1127/nova_hedwigia/2015/0270

  48. Siver, P.A. (2018a) Mallomonas aperturae sp. nov. (Synurophyceae) reveals that the complex cell architecture observed on modern synurophytes was well established by the middle Eocene. Phycologia 57: 273–279. https://doi.org/10.2216/17-112.1

  49. Siver, P.A. (2018b) Mallomonas skogstadii sp. nov. and M. bakeri sp. nov.: Two new fossil species from the middle Eocene representing extinct members of the section Heterospinae? Cryptogamie, Algologie 39: 511–524. https://dx.doi.org/10.7872/crya/v39.iss4.2018.511

  50. Siver, P.A. (2019) An emended description of the freshwater araphid genus Ambistria: a rare diatom from North American Eocene localities. Diatom Research 34: 225–236. https://doi.org/10.1080/0269249X.2019.1691055

  51. Siver, P.A. (2021) Aulacoseira chockii sp. nov., an early freshwater centric diatom from the Eocene bearing a unique morphology. Diatom Research. 36: 253–263. https://doi.org/10.1080/0269249X.2021.1982016

  52. Siver, P.A. & Hamilton, P.B. (2011) Diatoms of North America: The Freshwater Flora of the Atlantic Coastal Plain. Iconographia Diatomologica 22: 1–920.

  53. Siver, P.A. & Skogstad, A. (2022) A first account of the heterotrophic eukaryote Rabdiophrys Rainer from the fossil record and description of a new species from an ancient Eocene Arctic freshwater lake. European Journal of Protistology 82: 12857. https://doi.org/10.1016/j.ejop.2021.125857

  54. Siver, P.A. & Wolfe, A.P. (2005a) Eocene scaled chrysophytes with pronounced modern affinities. International Journal of Plant Sciences 166: 533–536.

  55. Siver, P.A. & Wolfe, A.P. (2005b) Scaled chrysophytes in Middle Eocene lake sediments from Northwestern Canada, including description of six new species. Nova Hedwigia, Beiheft 128: 295–308.

  56. Siver, P.A. & Wolfe, A.P. (2007) Eunotia spp. (Bacillariophyceae) from Middle Eocene lake sediments and comments on the origin of the diatom raphe. Canadian Journal of Botany 85: 83–90. https://dx.doi.org/10.1139/b06-143

  57. Siver, P.A. & Wolfe, A.P. (2009) Tropical ochrophyte algae from the Eocene of Northern Canada: A biogeographic response to past global warming. Palaios 24: 192–198. https://dx.doi.org/10.2110/palo.2007-p07-077r

  58. Siver, P.A., Hamilton, P.B. & Pelczar, J. (2009) New species of freshwater diatoms from acidic localities along the Atlantic Coastal Plain of the United States. Botany 87 (4): 408–427. https://doi.org/10.1139/B09-015

  59. Siver, P.A., Hamilton, P.B., Stachura-Suchoples, K. & Kociolek, J.P. (2005) Diatoms of North America: The Freshwater Flora of Cape Cod. Iconographia Diatomologica 14: 1–463.

  60. Siver, P.A., Wolfe, A.P. & Edlund, M. (2010) Taxonomic descriptions and evolutionary implications of Middle Eocene pennate diatoms representing the extant genera Oxyneis, Actinella and Nupela (Bacillariophyceae). Plant Ecology & Evolution 143: 340–351. https://dx.doi.org/10.5091/plecevo.2010.419

  61. Siver, P.A., Jo, B.Y., Kim, J.I., Shin, W., Lott, A.M. & Wolfe, A.P. (2015) Assessing the evolutionary history of the class Synurophyceae (Heterokonta) using molecular, morphometric, and paleobiological approaches. American Journal of Botany 102: 1–21. https://doi.org/10.3732/ajb.1500004

  62. Siver, P.A., Velez, M., Cliveti, M. & Binda, P. (2018) Early freshwater diatoms from the Upper Cretaceous Battle Formation in western Canada. Palaios 33: 1–10. https://doi.org/10.2110/palo.2018.045

  63. Siver, P.A., Lott, A.M. & Torres, P. (2020) Abundance and distribution of testate amoebae bearing siliceous plates in freshwater lakes and ponds along the east coast of North America: Importance of water depth and pH. Freshwater Science 39: 791–803.

  64. Sorhannus, U. (2004) Diatom phylogenetics inferred based on direct optimization of nuclear-encoded SSU r-RNA sequences. Cladistics 20: 487–497. https://doi.org/10.1111/j.1096-0031.2004.00034.x

  65. Sorhannus, U. (2007) A nuclear-encoded small-submit ribosomal RNA timescale for diatom evolution. Marine Micropaleontology 65: 1–12.

  66. Werum, M. & Lange-Bertalot, H. (2004) Diatoms in springs from Central Europe and elsewhere under the influence of hydrologeology and anthropogenic impacts. Iconographia Diatomologica 13: 3–417.

  67. Wetzel, C.E., Ector, L., Hoffmann, L., Lange-Bertalot, H. & Bicudo, D.C. (2011) Two new periphytic Eunotia species from the neotropical Amazonian “black waters”, with a type analysis of E. braunii. Diatom Research 26: 135–146. https://dx.doi.org/10.1080/0269249X.2011.587644

  68. Williams, D.W. & Reid, G. (2006) Fossils and the tropics, the Eunotiaceae (Bacillariophyta) expanded: a new genus for the Upper Eocene fossil diatom Eunotia reedii and the recent tropical marine diatom Amphora reichardtiana. European Journal of Phycology 41: 147–154. https://doi.org/10.1080/09670260600628564

  69. Wolfe, A.P. & Siver, P.A. (2009) Three extant genera of freshwater thalassiosiroid diatoms from Middle Eocene sediments in northern Canada. American Journal of Botany 96: 487–497. https://dx.doi.org/10.3732/ajb.0800307

  70. Wolfe, A.P., Edlund, M.B., Sweet, A.R. & Creighton, S.D. (2006) A first account of organelle preservation in Eocene nonmarine diatoms: observations and paleobiological implications. Palaios 21: 298–304.

  71. Wolfe, A.P., Reyes, A.V., Royer, D.L., Greenwood, D.R., Doria, G., Gagen, M.H., Siver, P.A. & Westgate, J.A. (2017) Middle Eocene CO2 and climate reconstructed from the sediment fill of a subarctic kimberlite maar. Geology 45: 619–622. https://dx.doi.org/10.1130/G39002.1

  72. Zanon, V. (1929) Diatomee triassiche. Atti Academie Nuovi Lincei, Roma 14: 289–307.