Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-05-31
Page range: 223-239
Abstract views: 51
PDF downloaded: 1

Insight from newly sequenced chloroplast genome challenges the primitive position of Corydalis temulifolia (Papaveraceae)

School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei Province, P. R. China
School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei Province, P. R. China
School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei Province, P. R. China; Bio-resources key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, P. R. China
chloroplast genome Corydalis temulifolia Franch. rearrangement phylogenetic inference systematic position Eudicots

Abstract

Corydalis temulifolia has been considered to be one of the primitive species of Corydalis; however, some recent works based on DNA markers revealed instead that Corydalis adunca rather C. temulifolia is in the basal clade within the Corydalis lineage. Both views are in conflict over concerns of species representing the primitive member of Corydalis. In this study, the chloroplast genome of C. temulifolia has been sequenced and compared with previously published chloroplast genome of C. adunca. With the sequences obtained, genomic phylogenetic analyses have been carried out. Although sharing the quadripartite structure of C. adunca, the complete chloroplast genome of C. temulifolia has particular features with respect to its genome size, gene order, gene content, and nucleotide substitution rates. For instance, we found the complete chloroplast genome of C. temulifolia has SSC region of 341 bp, which is markedly different in size than that of C. adunca (9,531 bp). C. temulifolia was determined as a species with large-scale rearrangements, consisting of the relocation of segment (~5 kb, trnV-UAC-rbcL) in the LSC region, the inversion of segment (~14 kb, ndhB-trnR-ACG) in the IR region and a large size (>10 kb) of IR expansion in IRs/SSC junction. Significantly, of the four large-scale rearrangements the relocation of the segment (trnV-UAC-rbcL) was absent from C. adunca but other two rearrangements were shared by C. adunca. In the latter, the segment (trnV-UAC-rbcL) resided in the conserved location and has not occurred rearrangement, suggesting that C. adunca was most likely represent a relatively early divergence species in Corydalis that compared to C. temulifolia. Further, we noticed that there was no change to the gene order of rps16 and rrn16 in C. temulifolia relative to C. adunca, and unlike C. adunca that seven out of ndh genes reside as pseudogenes, 11 ndh genes are all present in C. temulifolia. In addition, C. temulifolia has not only more dispersed repeats but slightly more tandem repeats and simple sequence repeats than C. adunca. The selection pressure estimation of protein-coding genes (psaI and rps7) in C. temulifolia were under positive selection, and it is different from four genes (psaI, rpl23, rpl36 and rps7) in C. adunca. Phylogenetic analysis based on the plastid genome revealed C. adunca to be the basal clade within the Corydalis lineage in the present sampling, suggesting that C. temulifolia is most likely not representative of the primitive members of Corydalis. This might indicate that the importance of morphological characters such as stigma may be in part misinterpreted, when being used to make inference about the evolutionary status of the Corydalis species. The results emphasise the need to consider both morphological and molecular evidence when determining not only the systematic position of species but also character evolution.

References

<p>Abdullah, Henriquez, C.L., Mehmood, F., Carlsen, M.M., Islam, M., Waheed, M.T., Poczai, P., Croat, T.B. &amp; Ahmed, I. (2020) Complete Chloroplast Genomes of <em>Anthurium huixtlense </em>and <em>Pothos scandens</em> (Pothoideae, Araceae): Unique Inverted Repeat Expansion and Contraction Affect Rate of Evolution. <em>Journal of Molecular Evolution</em> 88 (7): 562–574.&nbsp; https://doi.org/10.1007/s00239-020-09958-w</p>
<p>Alzahrani, D.A., Yaradua, S.S., Yaradua, S.S., Albokhari, E.J., Albokhari, E.J. &amp; Abba, A. (2020) Complete chloroplast genome sequence of <em>Barleria prionitis</em>, comparative chloroplast genomics and phylogenetic relationships among Acanthoideae. <em>BMC Genomics</em> 21 (1): 1–19. https://doi.org/10.1186/s12864-020-06798-2</p>
<p>Benson, G. (1999) Tandem repeats finder: A program to analyze DNA sequences. <em>Nucleic Acids Research</em> 27 (2): 573–580. https://doi.org/10.1093/nar/27.2.573</p>
<p>Bunting. (1966)<em> In: Baileya</em> 13: 172.</p>
<p>Chen, S.F., Zhou, Y.Q., Chen, Y.R. &amp; Gu, J. (2018) Fastp: An ultra-fast all-in-one FASTQ preprocessor. <em>Bioinformatics</em> 34 (17): i884–i890. https://doi.org/10.1093/bioinformatics/bty560</p>
<p>Cho, W.B., Lee, D.H., Choi, I.S. &amp; Lee, J.H. (2018) The complete chloroplast genome of hemi-parasitic <em>Pedicularis hallaisanensis</em> (Orobanchaceae). <em>Mitochondrial DNA Part B: Resources</em> 3 (1): 235–236.&nbsp; https://doi.org/10.1080/23802359.2018.1437820</p>
<p>Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B. &amp; De Hoon, M.J.L. (2009) Biopython: Freely available Python tools for computational molecular biology and bioinformatics. <em>Bioinformatics</em> 25 (11): 1422–1423. https://doi.org/10.1093/bioinformatics/btp163</p>
<p>Cosner, M.E., Raubeson, L.A. &amp; Jansen, R.K. (2004) Chloroplast DNA rearrangements in Campanulaceae: Phylogenetic utility of highly rearranged genomes. <em>BMC Evolutionary Biology</em> 4: 1–17. https://doi.org/10.1186/1471-2148-4-27</p>
<p>Darling, A.C.E., Mau, B., Blattner, F.R. &amp; Perna, N.T. (2004) Mauve: Multiple alignment of conserved genomic sequence with rearrangements. <em>Genome Research</em> 14 (7): 1394–1403.&nbsp; https://doi.org/10.1101/gr.2289704</p>
<p>Darriba, D. &amp; Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. <em>Nature Methods</em> 9 (8): 772. https://doi.org/10.1038/nmeth.2109</p>
<p>Delannoy, E., Fujii, S., Colas Des Francs-Small, C., Brundrett, M. &amp; Small, I. (2011) Rampant Gene loss in the underground orchid <em>Rhizanthella Gardneri</em> highlights evolutionary constraints on plastid genomes. <em>Molecular Biology and Evolution</em> 28 (7): 2077–2086.&nbsp; https://doi.org/10.1093/molbev/msr028</p>
<p>Dierckxsens, N., Mardulyn, P. &amp; Smits, G. (2016) NOVOPlasty: De novo assembly of organelle genomes from whole genome data.<em> Nucleic Acids Research</em> 45 (4): 1–9.&nbsp; https://doi.org/10.1093/nar/gkw955</p>
<p>Doyle, J.J. &amp; Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. <em>Phytochemical Bulletin </em>19: 11–15.</p>
<p>Fay, J.C. &amp; Wu, C.I. (2003) Sequence Divergence, Functional Constraint, and Selection in Protein Evolution. <em>Annual Review of Genomics and Human Genetics</em> 4: 213–235.&nbsp; https://doi.org/10.1146/annurev.genom.4.020303.162528</p>
<p>Fedde, F. (1924) Neue Arten von <em>Corydalis </em>aus China, Ⅵ. <em>Repertorium Specierum Novarum Regni Vegetabilis</em> 20: 50–63. https://doi.org/10.1002/fedr.19240200109</p>
<p>Fedde, F. (1925) Neue Arten von <em>Corydalis</em> aus China, IX. <em>Repertorium Specierum Novarum Regni Vegetabilis</em> 21: 46–52. https://doi.org/10.1002/fedr.19250210107</p>
<p>Fedde, F. (1925) Neue Arten von <em>Corydalis</em> aus China, X. <em>Repertorium Specierum Novarum Regni Vegetabilis </em>22: 26. https://doi.org/10.1002/fedr.19250220105</p>
<p>Firetti, F., Zuntini, A.R., Gaiarsa, J.W., Oliveira, R.S., Lohmann, L.G. &amp; Van Sluys, M.A. (2017) Complete chloroplast genome sequences contribute to plant species delimitation: A case study of the <em>Anemopaegma</em> species complex. <em>American Journal of Botany</em> 104 (10): 1493–1509. https://doi.org/10.3732/ajb.1700302</p>
<p>Franchet, A.R. (1894) Plantes Nouvelles de la Chine occidentale.<em> Journal de Botanique </em>8: 273–304.</p>
<p>Franchet, F.M. (1886) <em>Nouvelles Archives du Muséum d’Histoire Naturelle</em>. Paris, sér. 2, 8: 198.</p>
<p>Franch. (1886)<em> In: Nouvelles archives du Muséum d’histoire naturelle Ser.</em> 2, 8: 198.</p>
<p>Frazer, K.A., Pachter, L., Poliakov, A., Rubin, E.M. &amp; Dubchak, I. (2004) VISTA: computational tools for comparative genomics. <em>Nucleic Acids Research</em> 32: W273–W279.&nbsp; https://doi.org/10.1093/nar/gkh458</p>
<p>Greiner, S., Lehwark, P. &amp; Bock, R. (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. <em>Nucleic Acids Research</em> 47 (W1): W59–W64. https://doi.org/10.1093/nar/gkz238</p>
<p>Guisinger, M.M., Chumley, T.W., Kuehl, J.V., Boore, J.L. &amp; Jansen, R.K. (2010) Implications of the plastid genome sequence of <em>Typha</em> (Typhaceae, Poales) for understanding genome evolution in Poaceae. <em>Journal of Molecular Evolution</em> 70 (2): 149–166.&nbsp; https://doi.org/10.1007/s00239-009-9317-3</p>
<p>Guisinger, M.M., Kuehl, J.V., Boore, J.L. &amp; Jansen, R.K. (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: Rearrangements, repeats, and codon usage. <em>Molecular Biology and Evolution</em> 28 (1): 583–600.&nbsp; https://doi.org/10.1093/molbev/msq229</p>
<p>Hong, C.P., Park, J., Lee, Y., Lee, M., Park, S.G., Uhm, Y., Lee, J. &amp; Kim, C.K. (2017) <em>accD </em>nuclear transfer of <em>Platycodon grandiflorum</em> and the plastid of early Campanulaceae. <em>BMC Genomics</em> 18 (1): 607. https://doi.org/10.1186/s12864-017-4014-x</p>
<p>Hook, f. &amp; Thomson. (1864) On the Genus <em>Euptela</em>, Sieb. &amp; Zucc. <em>Journal of the Proceedings of the Linnean Society, Botany</em> 7: 243. [London]</p>
<p>Jin, J.J., Yu, W.B., Yang, J.B., Song, Y., Claude, W. &amp; Yi, T.S. (2020) GetOrganelle : a fast and versatile toolkit for accurate de novo assembly of organelle genomes. <em>Genome Biology</em> 21: 241. https://doi.org/10.1186/s13059-020-02154-5</p>
<p>Katoh, K. &amp; Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. <em>Molecular Biology and Evolution</em> 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010</p>
<p>Kim, K.J. &amp; Lee, H.L. (2004) Complete chloroplast genome sequences from <em>Korean ginseng</em> (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. <em>DNA Research</em> 11 (4): 247–261.&nbsp; https://doi.org/10.1093/dnares/11.4.247</p>
<p>Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J. &amp; Giegerich, R. (2001) REPuter: The manifold applications of repeat analysis on a genomic scale. <em>Nucleic Acids Research</em> 29 (22): 4633–4642. https://doi.org/10.1093/nar/29.22.4633</p>
<p>Lamarck, J.B. &amp; Candolle, A.P. (1805) <em>Flore Française, ed. 3, 4 (2). </em>Chez H. Agasse, Paris, 545 pp.</p>
<p>Lee, H.L., Jansen, R.K., Chumley, T.W. &amp; Kim, K.J. (2007) Gene relocations within chloroplast genomes of <em>Jasminum</em> and <em>Menodora</em> (Oleaceae) are due to multiple, overlapping inversions. <em>Molecular Biology and Evolution</em> 24 (5): 1161–1180.&nbsp; https://doi.org/10.1093/molbev/msm036</p>
<p>Lee, C., Choi, I.S., Cardoso, D., de Lima, H.C., de Queiroz, L.P., Wojciechowski, M.F., Jansen, R.K. &amp; Ruhlman, T.A. (2021) The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes. <em>Plant Journal</em> 107 (3): 861–875.&nbsp; https://doi.org/10.1111/tpj.15351</p>
<p>Li, H.T., Yi, T.S., Gao, L.M., Ma, P.F., Zhang, T., Yang, J.B., Gitzendanner, M.A., Fritsch, P.W., Cai, J., Luo, Y., Wang, H., van der Bank, M., Zhang, S.D., Wang, Q.F., Wang, J., Zhang, Z.R., Fu, C.N., Yang, J., Hollingsworth, P.M., Chase, M.W., Soltis, D.E., Soltis, P.S &amp; Li, D.Z. (2019) Origin of angiosperms and the puzzle of the Jurassic gap. <em>Nature Plants</em> 5 (5): 461–470.&nbsp; https://doi.org/10.1038/s41477-019-0421-0</p>
<p>Li, H.T., Luo, Y., Gan, L., Ma, P.F., Gao, L.M., Yang, J.B., Cai, J., Gitzendanner, M.A., Fritsch, P.W., Zhang, T., Jin, J.J., Zeng, C.X., Wang, H., Yu, W.B., Zhang, R., van der Bank, M., Olmstead, R.G., Hollingsworth, P.M., Chase, M.W. &amp; Soltis, D.E. (2021) Plastid phylogenomic insights into relationships of all flowering plant families. <em>BMC Biology</em> 19 (1): 232. [13 pp.]&nbsp; https://doi.org/10.1186/s12915-021-01166-2</p>
<p>Li, X., Yang, J.B., Wang, H., Song, Y., Corlett, R.T., Yao, X., Li, D.Z. &amp; Yu, W.B. (2021) Plastid NDH Pseudogenization and Gene Loss in a Recently Derived Lineage from the Largest Hemiparasitic Plant Genus <em>Pedicularis </em>(Orobanchaceae). <em>Plant and Cell Physiology </em>62 (6): 971–984.&nbsp; https://doi.org/10.1093/pcp/pcab074</p>
<p>Lidén, M., Fukuhara, T. &amp; Axberg, T. (1995) Phylogeny of <em>Corydalis</em>, ITS and morphology. <em>Systematics and Evolution of the Ranunculiflorae</em>, 188: 183–188.&nbsp; https://doi.org/10.1007/978-3-7091-6612-3_17</p>
<p>Lidén, M., Fukuhara, T., Rylander, J. &amp; Oxelman, B. (1997) Phylogeny and classification of Fumariaceae, with emphasis on <em>Dicentra</em> s. l., based on the plastid gene <em>rps16</em> intron. <em>Plant Systematics and Evolution</em> 206 (1–4): 411–420. https://doi.org/10.1007/bf00987960</p>
<p>Lidén, M. (1989)<em> Corydalis </em>(Papaveraceae: Fumarioideae) in Nepal. Bull. <em>Bulletin of the British Museum (Natural History) Botany</em> 18 (6): 524.</p>
<p>Lidén, M. (1986)<em> In: Opera Bot</em> 88: 28.</p>
<p>Linnaeus, C. (1753) POLYANDRIA. MONOGYNIA, Classis XIII. <em>In:</em> <em>Species Plantarum,</em> vol. 1. 508 pp.</p>
<p>Linnaeus, C. (1753) DIDYNAMIA ANGIOSPERMIA. <em>In:</em> <em>Species Plantarum,</em> vol. 2. 636 pp.&nbsp; https://doi.org/10.5962/bhl.title.669</p>
<p>Linnaeus, C. von. (1753) <em>Species Plantarum</em> 2: 723.</p>
<p>Liu, Y., Huo, N., Dong, L., Wang, Y., Zhang, S., Young, H.A., Feng, X. &amp; Gu, Y.Q. (2013) Complete Chloroplast Genome Sequences of Mongolia Medicine <em>Artemisia frigida</em> and Phylogenetic Relationships with Other Plants. <em>PLoS ONE </em>8 (2): e57533.&nbsp; https://doi.org/10.1371/journal.pone.0057533</p>
<p>Liu, L.X., Du, Y.X., Shen, C., Li, R., Lee, J. &amp; Li, P. (2020) The complete chloroplast genome of <em>papaver setigerum</em> and comparative analyses in papaveraceae. <em>Genetics and Molecular Biology</em> 43 (3): 1–10.&nbsp; https://doi.org/10.1590/1678-4685-GMB-2019-0272</p>
<p>Luo, Y., Ma, P.F., Li, H.T., Yang, J.B., Wang, H. &amp; Li, D.Z. (2016) Plastid phylogenomic analyses resolve Tofieldiaceae as the root of the early diverging monocot order Alismatales. <em>Genome Biology and Evolution</em> 8 (3): 932–945. https://doi.org/10.1093/gbe/evv260</p>
<p>Ma, J., Yang, B.X., Zhu, W., Sun, L.L., Tian, J.K. &amp; Wang, X.M. (2013) The complete chloroplast genome sequence of <em>Mahonia bealei</em> (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.<em> Gene</em> 528 (2): 120–131.&nbsp; https://doi.org/10.1016/j.gene.2013.07.037</p>
<p>Maximowicz, C.J. (1878) Diagnoses de nouvelles plantes asiatiques. Ⅱ. <em>Bulletin de l’Acadeìmie Impeìriale des Sciences de St.-Peìtersbourg </em>24: 26–89.</p>
<p>Maximowicz, C.J. (1889) <em>Flora Tangutica.</em> 49 pp.</p>
<p>Maximowicz, C.J. (1889)<em> In: Flora Tangutica</em>. 49 T. 25 Figs. 1–5.</p>
<p>Matuda. (1950)<em> In: Revista de la Sociedad Mexicana de Historia Natural</em> 11: 91.</p>
<p>Mower, J.P. &amp; Vickrey, T.L. (2018) Structural diversity among plastid genomes of land plants.<em> Advances in Botanical Research</em> 85: 263–292. https://doi.org/10.1016/bs.abr.2017.11.013</p>
<p>Palmer, J.D. &amp; Thompson, W.F. (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. <em>Cell</em> 29 (2): 537–550.&nbsp; https://doi.org/10.1016/0092-8674(82)90170-2</p>
<p>Palmer, J.D. (1983) Chloroplast DNA exists in two orientations. <em>Nature</em> 301 (5895): 92–93.&nbsp; https://doi.org/10.1038/301092a0</p>
<p>Park, S., An, B. &amp; Park, S.J. (2018) Reconfiguration of the plastid genome in <em>Lamprocapnos spectabilis</em>: IR boundary shifting, inversion, and intraspecific variation. <em>Scientific Reports</em> 8 (1): 1–14. https://doi.org/10.1038/s41598-018-31938-w</p>
<p>Pérez-Gutiérrez, M.A., Romero-García, A.T., Fernández, M.C., Blanca, G., Salinas-Bonillo, M.J. &amp; Suárez-Santiago, V.N. (2015) Evolutionary history of <em>Fumitories</em> (subfamily Fumarioideae, Papaveraceae): An old story shaped by the main geological and climatic events in the Northern Hemisphere. <em>Molecular Phylogenetics and Evolution</em> 88: 75–92. &nbsp;https://doi.org/10.1016/j.ympev.2015.03.026</p>
<p>Prain ex Fedde. (1925)<em> In: Repertorium specierum novarum regni vegetabilis</em> 22: 26.</p>
<p>Qi, W.K., Lin, F., Liu, Y.H., Huang, B.Q., Cheng, J.H., Zhang, W. &amp; Zhao, H. (2016) High-throughput development of simple sequence repeat markers for genetic diversity research in <em>Crambe abyssinica</em>. <em>BMC Plant Biology</em> 16 (1): 1–11. https://doi.org/10.1186/s12870-016-0828-y</p>
<p>Qu, X.J., Moore, M.J., Li, D.Z. &amp; Yi, T.S. (2019) PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. <em>Plant Methods</em> 15 (1): 1–12.&nbsp; https://doi.org/10.1186/s13007-019-0435-7</p>
<p>Ren, F.M., Wang, Y.W., Xu, Z.C., Li, Y., Xin, T.Y., Zhou, J.G., Qi, Y.D., Wei, X.P., Yao, H. &amp; Song, J.Y. (2019) DNA barcoding of<em> Corydalis</em>, the most taxonomically complicated genus of Papaveraceae. <em>Ecology and Evolution</em> 9 (4): 1934–1945. https://doi.org/10.1002/ece3.4886</p>
<p>Ren, F.M., Wang, L.Q., Li, Y., Zhuo, W., Xu, Z.C., Guo, H., Liu, Y., Gao, R.R. &amp; Song, J.Y. (2021) Highly variable chloroplast genome from two endangered Papaveraceae lithophytes <em>Corydalis tomentella</em> and <em>Corydalis saxicola</em>. <em>Ecology and Evolution</em> 11 (9): 4158–4171. https://doi.org/10.1002/ece3.7312</p>
<p>Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. &amp; Huelsenbeck, J.P. (2012) Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. <em>Systematic Biology</em> 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029</p>
<p>Ruhlman, T.A., Chang, W.J., Chen, J.J.W., Huang, Y.T., Chan, M.T., Zhang, J., Liao, D.C., Blazier, J.C., Jin, X., Shih, M.C., Jansen, R.K. &amp; Lin, C.S. (2015) NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss.<em> BMC Plant Biology</em> 15 (1): 1–9. https://doi.org/10.1186/s12870-015-0484-7</p>
<p>Salie, M.J. &amp; Thelen, J.J. (2016) Regulation and structure of the heteromeric acetyl-CoA carboxylase. <em>Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids</em> 1861 (9): 1207–1213.&nbsp; https://doi.org/10.1016/j.bbalip.2016.04.004</p>
<p>Sauquet, H., Carrive, L., Poullain, N., Sannier, J., Damerval, C. &amp; Nadot, S. (2015) Zygomorphy evolved from disymmetry in Fumarioideae (Papaveraceae, Ranunculales): New evidence from an expanded molecular phylogenetic framework. <em>Annals of Botany</em> 115 (6): 895–914.&nbsp; https://doi.org/10.1093/aob/mcv020</p>
<p>Stamatakis, A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. <em>Bioinformatics</em> 30 (9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033</p>
<p>Sun, Y.X, Moore, M.J., Zhang, S., Soltis, P.S., Soltis, D.E., Zhao, T., Meng, A., Li, X., Li, J. &amp; Wang, H.C. (2016) Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. <em>Molecular Phylogenetics and Evolution</em> 96: 93–101.&nbsp; https://doi.org/10.1016/j.ympev.2015.12.006</p>
<p>Sun, Y.X, Moore, M.J., Lin, N., Adelalu, K.F., Meng, A., Jian, S., Yang, L., Li, J. &amp; Wang, H.C. (2017) Complete plastome sequencing of both living species of Circaeasteraceae (Ranunculales) reveals unusual rearrangements and the loss of the <em>ndh</em> gene family. <em>BMC Genomics</em> 18 (1): 1–10.&nbsp; https://doi.org/10.1186/s12864-017-3956-3</p>
<p>Suyama, M., Torrents, D. &amp; Bork, P. (2006) PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. <em>Nucleic Acids Research</em> 34 (Web Server): W609–W612. https://doi.org/10.1093/nar/gkl315</p>
<p>Su, Z.Y. (1986) Sect. <em>Hamatae</em>, one new section of <em>Corydalis</em> from China. <em>Acta Botanica Yunnanica</em> 8 (4): 407–412.</p>
<p>Thiel, T., Michalek, W., Varshney, R.K. &amp; Graner, A. (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (<em>Hordeum vulgare</em> L.). <em>Theoretical and Applied Genetics</em> 106 (3): 411–422. https://doi.org/10.1007/s00122-002-1031-0</p>
<p>Walker, J.F., Jansen, R.K., Zanis, M.J. &amp; Emery, N.C. (2015) Sources of inversion variation in the small single copy (SSC) region of chloroplast genomes. <em>American Journal of Botany</em> 102 (11): 1751–1752.&nbsp; https://doi.org/10.3732/ajb.1500299</p>
<p>Wang, D.P., Zhang, Y.B., Zhang, Z., Zhu, J. &amp; Yu, J. (2010) KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. <em>Genomics, Proteomics and Bioinformatics</em> 8 (1): 77–80. https://doi.org/10.1016/S1672-0229(10)60008-3</p>
<p>Wang, T.P. (1934)<em> In: Contributions from the Institute of Botany, National Academy of Peiping</em> 2: 301.</p>
<p>Wang, Y.W. (2006) Systematics of <em>Corydalis </em>DC<em>. </em>(Fumariaceae)<em>.</em> Institute of Botany, the Chinese Academy of Sciences, Beijing, 129 pp.</p>
<p>Wang, W.T. (1984)<em> In: Fl.</em> Beijing 1: 670.</p>
<p>Weng, M.L., Blazier, J.C., Govindu, M. &amp; Jansen, R.K. (2014) Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. <em>Molecular Biology and Evolution</em> 31 (3): 645–659.&nbsp; https://doi.org/10.1093/molbev/mst257</p>
<p>Willdenow, K.L. (1804)<em> In: Species plantarum</em> 3 (3): 1838.</p>
<p>Wu, C.S., Wang, Y.N., Liu, S.M. &amp; Chaw, S.M. (2007) Chloroplast genome (cpDNA) of <em>Cycas taitungensis</em> and 56 cp protein-coding genes of <em>Gnetum parvifolium</em>: Insights into cpDNA evolution and phylogeny of extant seed plants. <em>Molecular Biology and Evolution</em> 24 (6): 1366–1379. https://doi.org/10.1093/molbev/msm059</p>
<p>Wu, J., Lin, P.C., Guo, Y.P. &amp; Liu, M.D. (2020) The complete chloroplast genome of <em>Corydalis conspersa</em>. <em>Mitochondrial DNA Part B: Resources</em> 5 (2): 1977–1978.&nbsp; https://doi.org/10.1080/23802359.2020.1756944</p>
<p>Wu, Z.Y., Zhuang, X. &amp; Su, Z.Y. (1996) The systematic evolution of <em>Corydalis</em> in relation to florogenesis and floristic regionalization in the world. <em>Acta Botanica Yunnanica </em>18 (3): 241–267.</p>
<p>Wu, Z.Y., Zhuang, X. &amp; Su, Z.Y. (1999)<em> Corydalis</em> DC. <em>In</em>: Wu, Z.Y. (Ed.) <em>Florae Reipublicae Popularis Sinicae</em>, vol. 32. Science Press, Beijing, China, pp. 106–479.</p>
<p>Wu, Z.Y., Zhuang, X. (1990) A New section of <em>Corydalis</em>, Sect. <em>Davidianae</em>. <em>Acta Botanica Yunnanica</em> 12 (3): 279–286.</p>
<p>Wu, S., Chen, J., Li, Y., Liu, A., Li, A., Yin, M., Shrestha, N., Liu, J. &amp; Ren, G. (2021) Extensive genomic rearrangements mediated by repetitive sequences in plastomes of <em>Medicago</em> and its relatives. <em>BMC Plant Biology</em> 21 (1): 1–17.&nbsp; https://doi.org/10.1186/s12870-021-03202-3</p>
<p>Xi, Z., Rest, J.S. &amp; Davis, C.C. (2013) Phylogenomics and coalescent analyses resolve extant seed plant relationships. <em>PLoS ONE</em> 8 (11): 21–24.&nbsp; https://doi.org/10.1371/journal.pone.0080870</p>
<p>Xia, M.Q., Liao, R.Y., Zhou, J.T., Lin, H.Y., Li, J.H., Li, P., Fu, C.X. &amp; Qiu, Y.X. (2021) Phylogenomics and biogeography of <em>Wisteria</em>: Implications on plastome evolution among inverted repeat-lacking clade (IRLC) legumes. <em>Journal of Systematics and Evolution </em>60 (2): 253–265. https://doi.org/10.1111/jse.12733</p>
<p>Xu, X.D. &amp; Wang, D. (2018) <em>Corydalis ternatifolia</em> belongs to<em> C.</em> Sect. <em>Asterostigmata</em>, not <em>C.</em> sect. <em>incisae</em> (papaveraceae): Evidence from morphological and phylogenetic study. <em>Phytotaxa</em> 382 (2): 193–203.&nbsp; https://doi.org/10.11646/phytotaxa.382.2.4</p>
<p>Xu, X.D. &amp; Wang, D. (2020) Characterization of the complete chloroplast genome of <em>Corydalis inopinata</em> Prain ex Fedde (Papaveraceae). <em>Mitochondrial DNA Part B: Resources</em> 5 (3): 3302–3303.&nbsp; https://doi.org/10.1080/23802359.2020.1814887</p>
<p>Xu, X.D. &amp; Wang, D. (2021) Comparative Chloroplast Genomics of <em>Corydalis</em> Species (Papaveraceae): Evolutionary Perspectives on Their Unusual Large Scale Rearrangements. <em>Frontiers in Plant Science</em> 11: 600354.&nbsp; https://doi.org/10.3389/fpls.2020.600354</p>
<p>Yu, Z.Y., Zhou, T.H., Li, N.Y. &amp; Wang, D. (2021) The complete chloroplast genome and phylogenetic analysis of <em>Corydalis fangshanensis</em> W. T. Wang ex S. Y. He (Papaveraceae). <em>Mitochondrial DNA Part B: Resources</em> 6 (11): 3171–3173.&nbsp; https://doi.org/10.1080/23802359.2021.1987172</p>
<p>Zhai, W., Duan, X.S., Zhang, R., Guo, C.C., Li, L., Xu, G.X., Shan, H.Y., Kong, H.Z. &amp; Ren, Y. (2019) Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. <em>Molecular Phylogenetics and Evolution</em> 135: 12–21.&nbsp; https://doi.org/10.1016/j.ympev.2019.02.024</p>
<p>Zhang, M.L., Su, Z.Y. &amp; Lidén, M. (2008) <em>Corydalis</em> DC. <em>In</em>: Wu, Z.Y., Raven, P.H. &amp; Hong, D.Y. (Ed.) <em>Flora of China</em>, <em>vol. 7</em>. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, pp. 295–427.</p>
<p>Zhang, Z.X., Wang, D. &amp; Yang, X. (2016) The taxonomic position of <em>Corydalis parviflora</em> Su &amp; Lidén (Papaveraceae), a genetically distinct species: Evidence from cpDNA and nDNA sequences. <em>Biochemical Systematics and Ecology</em> 67: 134–141.&nbsp; https://doi.org/10.1016/j.bse.2016.06.003</p>
<p>Zhou, T., Ruhsam, M., Wang, J., Zhu, H.H., Li, W.L., Zhang, X., Xu, Y.C., Xu, F.S. &amp; Wang, X.M. (2019) The Complete Chloroplast Genome of <em>Euphrasia regelii,</em> Pseudogenization of <em>ndh</em> Genes and the Phylogenetic Relationships within Orobanchaceae. <em>Frontiers in Genetics</em> 10: 444.&nbsp; https://doi.org/10.3389/fgene.2019.00444</p>