Skip to main content Skip to main navigation menu Skip to site footer
Article
Published: 2022-03-08

Assessment of SCoT and ISSR molecular markers in genetic diversity of rigid ryegrass (Lolium rigidum Gaud.) in Iran

Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, P.O Box 416, Chengdu, Sichuan 610041, China. ; University of Chinese Academy of Science, Beijing 100049, China
Conservation Gene flow Genetic diversity ISSR Lolium rigidum SCoT Monocots

Abstract

Lolium rigidum (Poaceae) is important forage and weed species grown in different habitats of Iran. Rigid ryegrass originated from the Mediterranean region. They are very resistant to common herbicides. To investigate the genetic variability of L. rigidum, we studied 81 individuals of 18 natural populations from Iran; four ISSR and four SCoT primers were used. These are reproducible and highly polymorphic markers. We examined their gene flow and genetic variation. Genetic diversity among and within populations was determined through different methods. The Mantel test indicated a significant correlation between these populations’ genetic distance and geographical distance and a high correlation between ISSR and SCoT markers. Analyses of molecular variance (AMOVA) produced high genetic differences among the studied populations for both markers. Structure analysis showed population genetic stratification and identified three genetic groups through ISSR molecular markers for L. rigidum in Iran and indicated restricted gene flow. The current investigation revealed the productivity of ISSR and SCoT molecular markers in evaluating genetic variation and grouping of wild populations of L. rigidum and provides detailed data concerning the genetic structure of its populations. The present finding provided useful information for further conservation, selection, and breeding plans.

References

  1. Abbaszade, S., Jafari, A.A., Safari, H. & Shirvani, H. (2013) Genetic diversity of Lolium multiflorum accessions using ISSR molecular markers. International Journal of Farming and Allied Sciences 22: 1217–1222.

  2. Abdel-Lateif, K.S. & Hewedy, O.A. (2018) Genetic diversity among Egyptian wheat cultivars using SCoT and ISSR markers. Journal of Animal Breeding and Genetics 50: 36–45.

  3. Alcántara-de la Cruz, R., Fernández-Moreno, P.T., Ozuna, C.V., Rojano-Delgado, A.M., Cruz-Hipolito, H.E., Domínguez-Valenzuela, J.A., Barro, F. & De Prado, R. (2016) Target and non-target site mechanisms developed by glyphosate-resistant hairy beggarticks (Bidens pilosa L.) populations from Mexico. Frontiers in Plant Science 7: 1492.  https://doi.org/10.3389/fpls.2016.01492

  4. Al-Qurainy, F., Khan, S., Nadeem, M. &Tarroum, M. (2015) SCoT marker for the assessment of genetic diversity in Saudi Arabian date palm cultivars. Pakistan Journal of Botany 47: 637–643.

  5. Amin, A.K., El-Fayoumi, H.H., Mohamed, N.H., Tawfik, R.S., Allam, M. & Karam, M.A. (2017) Relationships among some regional species of the genus Lolium L. based on morphological and molecular markers. International Journal of Current Research 3: 1333–1363.

  6. Balfourier, F., Charmet, G. & Ravel, C. (1998) Genetic differentiation within and between natural populations of perennial and annual ryegrass (Lolium perenne and L. rigidum). Heredity 81: 100–110.

  7. Collard, B.C. & Mackill, D.J. (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter 27: 86.  https://doi.org/10.1007/s11105-008-0060-5

  8. Costa, R., Pereira, G., Garrido, I., Tavares-de-Sousa, M.M. & Espinosa, F. (2016) Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify Orchardgrass (Dactylis glomerata L.) germplasm variations. PloS one 11: e0152972.  https://doi.org/10.1371/journal. pone0152972

  9. Essadki, M., Ouazzani, N., Lumaret, R. & Moumni, M. (2006) ISSR variation in Olive-tree cultivars from Morocco and other western countries of the Mediterranean Basin. Genetic Resources and Crop Evolution 53: 475–482.  https://doi.org/10.1007/s10722-004-1931-8

  10. Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x

  11. Fasih, Z., Farshadfar, M. & Safari, H. (2013) Genetic diversity evaluation of within and between populations for Festuca arundinacea by ISSR markers. International Journal of Agriculture and Crop Sciences 5: 1468–1472.

  12. Fernández-Moreno, P.T., Bastida, F. & De Prado, R. (2017a) Evidence, mechanism and alternative chemical seedbank-level control of glyphosate resistance of a rigid ryegrass (Lolium rigidum) biotype from Southern Spain. Frontiers in Plant Science 8: 450.

  13. Fernández-Moreno, P.T., Travlos, I., Brants, I. & De Prado, R. (2017b) Different levels of glyphosate-resistant Lolium rigidum L. among major crops in southern Spain and France. Scientific Reports 7: 1–12.

  14. Friedman, J. & Barrett, S.C. (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Annals of Botany 103: 1515–1527.

  15. Ghariani, S., Elazreg, H., Chtourou-Ghorbel, N., Chakroun, M. & Trifi-Farah, N. (2015) Genetic diversity analysis in Tunisian perennial ryegrass germplasm as estimated by RAPD, ISSR, and morpho-agronomical markers. Genetics and Molecular Research 14: 18523-18533. https://doi.org/10.4238/2015.december.23.40

  16. Goggin, D.E., Powles, S.B. & Steadman, K.J. (2012) Understanding Lolium rigidum seeds: the key to managing a problem weed? Agronomy 2: 222–239.  https://doi.org/10.3390/agronomy2030222

  17. González-Andújar, J.L. & Fernández-Quintanilla, C. (2004) Modelling the population dynamics of annual ryegrass (Lolium rigidum) under various weed management systems. Crop Protection 23: 723–729.  https://doi.org/10.1016/j.cropro.2003.12.007

  18. Gorddard, R.J., Pannell, D.J. & Hertzler, G. (1996) Economic evaluation of strategies for management of herbicide resistance. Agricultural Systems 51: 281–298.  https://doi.org/10.1016/0308-521X(95)00047-9

  19. Guan, X., Yuyama, N., Stewart, A., Ding, C., Xu, N., Kiyoshi, T. & Cai, H. (2017) Genetic diversity and structure of Lolium species surveyed on nuclear simple sequence repeat and cytoplasmic markers. Frontiers in Plant Science 8: 584.  https://doi.org/10.3389/fpls.2017.00584

  20. Guo, J., Yu, X., Yin, H., Liu, G., Li, A., Wang, H. & Kong, L. (2016) Phylogenetic relationships of Thinopyrum and Triticum species revealed by SCoT and CDDP markers. Plant Systematics and Evolution 302: 1301–1309.  https://doi.org/10.1007/s00606-016-1332-4

  21. Hammer, Ø., Harper, D. & Ryan, P.D. (2001) PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.

  22. Huang, C.Q., Liu, G.D., Bai, C.J., Wang, W.Q., Tang, J. & Yu, D.G. (2012) Exploring the genetic diversity of Cynodon radiatus (Poaceae) accessions using ISSR markers. Biochemical Systematics and Ecology 45: 218–223.

  23. Huang, X., Xinquan, Z., Linkai, H., Yingmei, M., Guohua, Y., Samantha, L., Jie, Z. & Huan, L. (2014) Genetic diversity of Hemarthria altissima and its related species by EST-SSR and SCoT markers. Biochemical Systematics and Ecology 57: 338–344.  https://doi.org/10.1016/j.bse.2014.09.016

  24. Hu, T., Li, H., Li, D., Sun, J. & Fu, J. (2011) Assessing genetic diversity of perennial ryegrass (Lolium perenne L.) from four continents by inter simple sequence repeat (ISSR) markers. African Journal of Biotechnology 10: 19365-19374.  https://doi.org/10.5897/AJB11.1575

  25. Inda, L.A., Segarra-Moragues, J.G., Müller, J., Peterson, P.M. & Catalán, P. (2008) Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Molecular Phylogenetics and Evolution 46: 932–957.  https://doi.org/10.1016/j.ympev.2007.11.022

  26. Khan, N., Saudan, S. & Dhawan, S. (2017) Development of species-specific SCoT markers and analysis of genetic diversity among Mentha genotypes. International Journal of Innovative Research in Technology 4: 145–156.

  27. Leigh, J.W. & Bryant, D. (2015) POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116.

  28. Li, A. & Ge, S. (2001) Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSR markers. Annals of Botany 87: 585–590.  https://doi.org/10.1006/anbo.2001.1390

  29. Lorenzoni, R.M., Menine, F., Júnior, E.M., Oliveira, F.L. & Soares, T.C.B. (2017) Genetic diversity of yacon accessions using ISSR markers. Genetics and Molecular Research 16. https://doi.org/10.4238/gmr16029576

  30. Mehta, A.K., Basha, M.H., Gour, V.K., Neeta, M., Biliaya, S.K. & Kachare, S. (2020) Genetic diversity analysis of mutant lines of oat (Avena sativa L.) based on RAPD and ISSR analysis. The 23rd International Gr d International Grassland Congress (Sustainable use of Grassland Resources for for Forage Production, Biodiversity and and Environmental Protection); Nov 20-24; New Delhi, India.

  31. Mohammadi, R., Panahi, B. & Amiri, S. (2020) ISSR Based Study of Fine Fescue (Festuca ovina L.) Highlighted the Genetic Diversity of Iranian Accessions. Cytology and Genetics 54: 257–263.  https://doi.org/10.3103/S0095452720030123

  32. Moradkhani, H., Mehrabi, A.A., Etminan, A. & Pour-Aboughadareh, A. (2015) Molecular diversity and phylogeny of Triticum-Aegilops species possessing D genome revealed by SSR and ISSR markers. Journal of Plant Breeding and Crop Science 71: 81–95.  https://doi.org/10.1515/plass-2015-0024

  33. Oshib Nataj, M., Shekarchi, H., Akbarzadeh, M. & Keshavarzi, M .(2012) An autecological study of Lolium rigidum L. in Mazandaran Province. Iranian Journal of Plant Physiology 3: 37–46.

  34. Niknam, S., Moerkerk, M. & Cousens, R. (2002) Weed seed contamination in cereal and pulse crops. In: Spafford Jacob, H., Dodd, J. & Moore, J.H. (Eds.) Proceedings of the 13th Australian weeds conference. Sept 8-13; Perth, Western Australia. pp. 59–62.

  35. Ony, M.A., Nowicki, M., Boggess, S.L., Klingeman, W.E., Zobel, J.M., Trigiano, R.N. & Hadziabdic, D. (2020) Habitat fragmentation influences genetic diversity and differentiation: Fine-scale population structure of Cercis canadensis (eastern redbud). Ecology and evolution 10: 3655–3670.  https://doi.org/10.1002/ece3.6141

  36. Pannell, D.J., Stewart, V., Bennett, A., Monjardino, M., Schmidt, C. & Powles, S.B. (2004) RIM: a bioeconomic model for integrated weed management of Lolium rigidum in Western Australia. Agricultural Systems 79: 305–325.  https://doi.org/10.1016/S0308-521X(03)00089-1

  37. Peakall, R. & Smouse, P.E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Resources 6: 288–295.  https://doi.org/10.1111/j.1471-8286.2005.01155.x

  38. Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, H.P. & Hyvönen, J. (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9: 1–32.

  39. Posselt, U.K., Barre, P., Brazauskas, G. & Turner, L.B. (2006) Comparative analysis of genetic similarity between perennial ryegrass genotypes investigated with AFLPs, ISSRs, RAPDs and SSRs. Czech Journal of Genetics and Plant Breeding 42: 87.  https://doi.org/10.17221/3647-CJGPB

  40. Prevost, A. & Wilkinson, M.J. (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and applied Genetics 98: 107–112.  https://doi.org/10.1007/s001220051046

  41. Pritchard, J.K., Stephens, M., Rosenberg, N.A. & Donnelly, P. (2000) Association mapping in structured populations. American Journal of Human Genetics 67: 170–181.  https://doi.org/10.1086/302959

  42. Safari, H., Zebarjadi, A., Kahrizi, D., Jafari, A.A. (2019) The study of inter-specific relationships of Bromus genus based on SCoT and ISSR molecular markers. Molecular Biology Reports 46: 5209–5223.  https://doi.org/10.1007/s11033-019-04978-2

  43. Sheidai, M., Moradian, P.Z., Koohdar, F. & Talebi, S.M. (2018) Infra-specific morphological, anatomical and genetic variations in Lallemantia peltata (L.) Fisch. & C. A. Mey. (Lamiaceae). Acta Biologica Hungarica 4: 85–93.  https://doi.org/10.14258/abs.v4i3.4412

  44. Tabaripoor, R., Sheidai, M., Talebi, S.M. & Noormohammadi, Z. (2016) Population genetic diversity and structure in Ziziphora tenuior L.: Identification of potential gene pools. Genetika 48: 565–578.  https://doi.org/10.2298/GENSR1602565T

  45. Tabaripour, R. & Keshavarzi, M. (2021) Interspecific Molecular Variation of Lolium L. Based on ISSR, SCoT and ITS. Iranian Journal of Science and Technology, Transactions A 45: 1263–1272.  https://doi.org/10.1007/s40995-021-01151-y

  46. Talebi, S.M., Tabaripour, R. & Matsyura, A. (2021) Genetic diversity and population structure of diverse Iranian Nepeta L. taxa. Genetic Resources and Crop Evolution 69: 285–296.  https://doi.org/10.1007/s10722-021-01228-y

  47. Tesfaye, K., Govers, K., Bekele, E. & Borsch, T. (2014) ISSR fingerprinting of Coffea arabica throughout Ethiopia reveals high variability in wild populations and distinguishes them from landraces. Plant Systematics and Evolution 300: 881–897.  https://doi.org/10.1007/s00606-013-0927-2

  48. Tong, YW., Lewis, B.J., Zhou, W.M., Mao, C.R., Wang, Y., Zhou, L., Yu, D.P., Dai, L.M. & Qi, L. (2020) Genetic diversity and population structure of natural Pinus koraiensis populations. Forests 11: 39.  https://doi.org/10.3390/f11010039

  49. Varshney, R.K., Chabane, K., Hendre, P.S., Aggarwal, R.K. & Graner, A. (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science 173: 638–649.  https://doi.org/10.1016/j.plantsci.2007.08.010

  50. Vieira, J.P.S., Schnadelbach, A.S., Hughes, F.M., Jardim, J.G., Clark, L.G. & De Oliveira, R.P. (2020) Ecological niche modelling and genetic diversity of Anomochloa marantoidea (Poaceae): filling the gaps for conservation in the earliest-diverging grass subfamily. Botanical Journal of the Linnean Society 192: 258–280.  https://doi.org/10.1093/botlinnean/boz039

  51. Wang, Y. (2009) Genetic diversity and candidate gene selection for drought tolerance in perennial ryegrass. MS Thesis. Purdue University.

  52. Weising, K., Nybom, H., Wolff, K. & Kahl, G. (2005) DNA fingerprinting in plants. Principles, methods, and applications. CRC Press, Boca Rayton, pp. 472.

  53. Yang, J.B., Dong, Y.R., Wong, K.M., Gu, Z.J. & Yang, H.Q. (2018) Genetic structure and differentiation in Dendrocalamus sinicus (Poaceae: Bambusoideae) populations provide insight into evolutionary history and speciation of woody bamboos. Scientific Reports 8: 1–13.  https://doi.org/10.1038/s41598-018-35269-8

  54. Yang, S., Xue, S., Kang, W., Qian, Z. & Yi, Z. (2019) Genetic diversity and population structure of Miscanthus lutarioriparius, an endemic plant of China. PloS one 14: e0211471.  https://doi.org/10.1371/journal.pone.0211471

  55. Yeh, F.C., Yang, R.C. & Boyle, T. (1999) POPGENE. Microsoft windows-based freeware for population genetic analysis. Release 1.31. Edmonton, University of Alberta.

  56. Zhang, J., Xie, W., Wang, Y. & Zhao, X. (2015) Potential of Start Codon Targeted (SCoT) Markers to Estimate Genetic Diversity and Relationships among Chinese Elymus sibiricus Accessions. Molecules 20: 5987.  https://doi.org/10.3390/molecules20045987

  57. Zhang, Y., Haidong, Y., Xiaomei, J., Xiaoli, W., Linkai, H., Bin, X., Xinquan, Z. & Lexin, Z. (2016) Genetic variation, population structure and linkage disequilibrium in Switchgrass with ISSR, SCoT and EST-SSR markers. Hereditas 153: 1–12.  https://doi.org/10.1186/s41065-016-0007-z