Skip to main content Skip to main navigation menu Skip to site footer
Article
Published: 2022-03-08

A new species of Arthrographis (Eremomycetaceae, Dothideomycetes), from the soil in Guizhou, China

Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
Department of Microbiology, Guiyang College of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
Department of Microbiology, Guiyang College of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350108, Fujian, China
Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
taxonomy phylogeny saprophytic fungi Fungi

Abstract

During a survey of keratinolytic fungi in China, a new species, Arthrographis multiformispora was isolated from soil samples. Morphologically, A. multiformispora differs from other species in the genus by the presence of globose or subglobose chlamydospores and cylindrical arthroconidia. Phylogenetically, our four strains were clustered together with high support values and separated from other clades. We provided a description, illustrations, and phylogenetic tree for the new species.

References

  1. Biser, S.A., Perry, H.D., Donnenfeld, E.D., Doshi, S.J. & Chaturvedi, V. (2004) Arthrographis kalrae mimicking acanthamoeba keratitis. Cornea 23: 314–317. https://doi.org/10.1097/00003226-200404000-00018

  2. Boana, P., Arthur, I., Golledge, C. & Ellis, D. (2012) Refractory Arthrographis kalrae native knee joint infection. Medical Mycology Case Reports 1 (1): 112–114. https://doi.org/10.1016/j.mmcr.2012.10.005

  3. Capella-Gutierrez, S., Silla-Martinez, J.M. & Gabaldon, T. (2009) TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973.  https://doi.org/10.1093/bioinformatics/btp348

  4. Chen, C.J., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y.H. & Xia, R. (2020) TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13 (8): 1194–1202.  https://doi.org/10.1016/j.molp.2020.06.009

  5. Chin-Hong, P.V., Sutton, D.A., Roemer, M., Jacobson, M.A. & Aberg, J.A. (2001) Invasive fungal sinusitis and meningitis due to Arthrographis kalrae in a patient with AIDS. Journal of Clinical Microbiology 39: 804–807. https://doi.org/10.1128/JCM.39.2.804-807.2001

  6. Giraldo, A., Gené, J., Sutton, D.A., Madrid, H., Cano, J., Crous, P.W. & Guarro, J. (2014) Phylogenetic circumscription of Arthrographis (Eremomycetaceae, Dothideomycetes). Persoonia 32: 102–114.  https://doi.org/10.3767/003158514x680207

  7. Hernández-Restrepo, M., Giraldo, A., van Doorn, R., Wingfield, M.J., Groenewald, J.Z., Barreto, R.W., Colmán, A.A., Mansur, P.S.C. & Crous, P.W. (2020) The genera of Fungi – G6: Arthrographis, Kramasamuha, Melnikomyces, Thysanorea, and Verruconis. Fungal Systematics and Evolution 6 (1).  https://doi.org/10.3114/fuse.2020.06.01

  8. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14 (6): 587–589.  https://doi.org/10.1038/nmeth.4285

  9. Kang, H.J., Sigler, L., Lee, J., Gibas, C.F., Yun, S.H. & Lee, Y.W. (2010) Xylogone Ganodermophthora sp. nov., an ascomycetous pathogen causing yellow rot on cultivated mushroom Ganoderma lucidum in Korea. Mycologia 102 (5): 1167–1184. https://doi.org/10.3852/09-304

  10. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010

  11. Minh, Q., Nguyen, M. & von Haeseler, A.A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188–1195.  https://doi.org/10.1093/molbev/mst024

  12. Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.  https://doi.org/10.1093/molbev/msu300

  13. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.  https://doi.org/10.1093/sysbio/sys029

  14. Sigler, L. & Carmichael, J.W. (1976) Taxonomy of Malbranchea and some other Hyphomycetes with arthroconidia. Mycotaxon 4: 349–488.

  15. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. https://doi.org/10.1093/molbev/mst197

  16. Tewari, R.P. & Macpherson, C.R. (1971) A new dimorphic fungus, Oidiodendron kalrae: morphological and biochemical characteristics. Mycologia 63: 602–611. https://doi.org/10.2307/3757556

  17. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

  18. Voigt, K. & Wöstemeyer, J. (2000) Reliable amplification of actin genes facilitates deep-level phylogeny. Microbiological Research 155: 179–195. https://doi.org/10.1016/s0944-5013(00)80031-2

  19. White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR protocols: a guide to methods and applications, Academic Press, San Diego, California, pp 315–322.

  20. Yoshitsugu, S. & Masaki, H. (2010) Arthrographis kalrae, a rare causal agent of onychomycosis, and its occurrence in natural and commercially available soils. Medical Mycology 48: 2, 384–389. https://doi.org/10.3109/13693780903219014

  21. Zhang, D., Gao, F.L., Jakovlić, I., Zou, H., Zhang, J., Li, W.X. & Wang, G.T. (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20 (1): 348–355. https://doi.org/10.1111/1755-0998.13096

  22. Zhang, Z.Y., Dong, C.B., Chen, W.H., Mou, Q.R., Lu, X.X., Han, Y.F., Huang, J.Z. & Liang, Z.Q. (2020a) The enigmatic Thelebolaceae (Thelebolales, Leotiomycetes): one new genus Solomyces and five new species. Frontiers in Microbiology 11: 572596. https://doi.org/10.3389/fmicb.2020.572596

  23. Zhang, Z.Y., Shao, Q.Y., Li, X., Chen, W.H., Liang, J.D., Han, Y.F., Huang, J.Z. & Liang, Z.Q. (2021) Culturable fungi from Urban soils in China I: description of 10 new taxa. Microbiology Spectrum 9: e00867–21.  https://doi.org/10.1128/Spectrum.00867-21

  24. Zhang, Z.Y., Zhao, Y.X., Shen, X., Chen, W.H., Han, Y.F., Huang, J.Z., Liang, Z.Q.(2020b) Molecular phylogeny and morphology of Cunninghamella guizhouensis sp. nov. (Cunninghamellaceae, Mucorales), from soil in Guizhou, China. Phytotaxa 455 (1): 31–39.  https://doi.org/10.11646/phytotaxa.455.1.4