Skip to main content Skip to main navigation menu Skip to site footer
Article
Published: 2021-11-26

Morphological and phylogenetic relations of members of the genus Coelastrella (Scenedesmaceae, Chlorophyta) from the Ural and Khentii Mountains (Russia, Mongolia)

Institute of biology Komi Science Center Ural Branch Russian Academia of Science, 28, Kommunisticheskaya St., Syktyvkar, 167982, Russia
Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of Russian Academy of Sciences, 132, Lermontova St., Irkutsk, 664033, Russia
Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of Russian Academy of Sciences, 132, Lermontova St., Irkutsk, 664033, Russia
Institute of biology Komi Science Center Ural Branch Russian Academia of Science, 28, Kommunisticheskaya St., Syktyvkar, 167982, Russia
Institute of biology Komi Science Center Ural Branch Russian Academia of Science, 28, Kommunisticheskaya St., Syktyvkar, 167982, Russia
Lomonosov Moscow State University Zvenigorod Biological Station, 1, Leninskie Gory, bldg. 12, Faculty of Biology, Moscow State University, Moscow, 119234, Russia
Coelastrella green terrestrial algae morphology phylogeny Scenedesmaceae Algae

Abstract

We describe the morphological features and the phylogenetic relationships of five morphologically similar strains belonging to the genus Coelastrella, which live in different ecological and geographical conditions of terrestrial ecosystems: in the Ural Mountains (Polar, Subpolar, and Northern Urals of Russia) and the Khentii Mountains (Russia and Mongolia). We analysed algal strains stored in the Culture Collection of Algae of the Institute of Biology, Syktyvkar, Russia (SYKOA Ch-045-09, SYKOA Ch-047-11, SYKOA Ch-072-17) and the Culture Collection of Algae at Herbarium of the Siberian Institute of Plant Physiology and Biochemistry, Irkutsk, Russia (IRK-A 2, IRK-A 173). By light microscopy, all samples were assigned to Coelastrella terrestris. However, the phylogenetic analyses based on the nucleotide sequences of 18S rDNA and ITS1-ITS2 showed that only one strain belongs to C. terrestris (IRK-A 173). Other samples were closer to C. oocystiformis (SYKOA Ch-045-09; IRK-A 2) and C. aeroterrestrica (SYKOA Ch-047-11). The strain SYKOA Ch-072-17 is probably a new species for the genus. These results confirmed the high phenotypic variability and the hidden diversity among the members of this green algal group.

References

  1. Abe, K., Takizawa, H., Kimura, S. & Hirano, M. (2004) Characteristics of Chlorophyll Formation of the Aerial Microalga Coelastrella striolata var. multistriata and its Application for Environmental Biomonitoring. Journal of Bioscience and Bioengineering 98: 34–39.  https://doi.org/10.1263/jbb.98.34

  2. Aburai, N., Kazama, H., Tsuoraka, A., Goto, M. & Abe, K. (2018) Development of whole-cell-based screening method for a carotenoid assay using aerial microalgae. Journal of Biotechnology 268: 6–11.  https://doi.org/10.1016/j.jbiotec.2017.12.025

  3. Al-Rawi, A., Alwash, B.M.J., Al-Essa, N.E. & Hassan, F.M. (2018) A new record of Coelastrella terrestris (Reisigl) Hegewald & N. Hanagata, 2002 (Sphaeropleales, Scenedesmaceae) in Iraq. Bulletin of the Iraq Natural History Museum 15: 153–161.  https://doi.org/10.26842/binhm.7.2018.15.2.0153

  4. Ancona-Canché, K., López-Adrián, S., Espinosa-Aguilar, M., Garduño-Solórzano, G., Toledano-Thompson, T., Narváezzapata, J. & Valdez-Ojeda, R. (2017) Molecular phylogeny and morphologic data of strains of the genus Coelastrella. Botanical Sciences 95: 527–537.  https://doi.org/10.17129/botsci.1201

  5. Andersen, R.A. (2005) Algal Culturing Techniques. Elsevier/Academic, Burlington/San & Diego/London, 578 pp.

  6. Andreyeva, V.M. (1998) Soil and aerophilic green algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). Nauka, Saint Petersburg, 351 pp.

  7. Ankenbrand, M.J., Keller, A., Wolf, M., Schultz, J. & Förster, F. (2015) ITS2 database V: Twice as much. Molecular Biology and Evolution 32: 3030–3032.  https://doi.org/10.1093/molbev/msv174

  8. Bourrelly, P. (1962) Quelques Algues du Jura Francais. Archives of Microbiology 42: 154–158.

  9. Chodat, R. (1922) Matériaux pour l’histoire des algues de la Suisse. Bulletin de la Société Botanique de Geneve 13: 66–114.

  10. Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: A computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.  https://doi.org/10.1046/j.1365-294x.2000.01020.x

  11. Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. (2002) TCS: Estimating gene genealogies. Processing Symposium, International Proceedings 2: 184.  https://doi.org/10.1109/ipdps.2002.1016585

  12. Coleman, A.W. (2009) Is there a molecular key to the level of ‘biological species’ in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution 50: 197–203.  https://doi.org/10.1016/j.ympev.2008.10.008

  13. Darienko, T., Gustavs, L., Eggert, A., Wolf, W. & Pröschold, T. (2015) Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS One 10 (6): e0127838.  https://doi.org/10.1371/journal.pone.0127838

  14. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.  https://doi.org/10.1038/nmeth.2109

  15. Dimitrova, P., Marinova, G. & Pilarski, P. (2016) Preliminary studies of the growth and biochemical composition of a promising carotenoid producing strain Coelastrella sp. Science & Technologies VI: 71–78.

  16. Eliáš, M., Němcová, Y., Škaloud, P., Neustupa, J., Kaufnerová, V. & Šejnohova, L. (2010) Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae, Chlorophyta) from Singapore. International Journal of Systematic and Evolutionary Microbiology 60: 1–12.  https://doi.org/10.1099/ijs.0.012963-0

  17. Ettl, H. & Gärtner, G. (2014) Syllabus der Boden-, Luft- und Flechtenalgen. 2 ergänzte Auflage. Springer Spektrum, Berlin & Heidelberg, 773 pp.

  18. Fawley, M.W., Fawley, K.P. & Hegewald, E. (2011) Taxonomy of Desmodesmus serratus (Chlorophyceae, Chlorophyta) and related taxa on the basis of morphological and DNA sequence data. Phycologia 50: 23–56.  https://doi.org/10.2216/10-16.1

  19. Fott, B. & Kalina, T. (1979) Coelastropsis, a new chlorococcal genus. Algological Studies [Archiv für Hydrobiologie 56:] 24: 287–302.

  20. Fučíková, K., Lewis, P.O. & Lewis, L.A. (2014) Putting incertae sedis taxa in their place: a proposal for ten new families and three new genera in Sphaeropleales (Chlorophyceae, Chlorophyta). Journal of Phycology 50: 14–25.  https://doi.org/10.1111/jpy.12118

  21. Gaysina, L.A., Eliaš, M., Allaguvatova, R.Z., Kunsbayeva, D.F. & Gontcharov, A.A. (2018) Study of biodiversity of family Scenedesmaceae in terrestrial ecosystems using polyphasic approach. In: Voloshko, L.N. (Ed.) Proceedings of the IV All-Russian Scientific Conference with International Participation “Algae: Problems of Taxonomy, Ecology and Use in Monitoring”. Renome, Saint Petersburg, pp. 118–124.

  22. Gopalakrishnan, K.K., Novis, P.M. & Visnovsky, G. (2014) Alpine Scenedesmaceae from New Zealand: new taxonomy. New Zealand Journal of Botany 52: 84–99.  https://doi.org/10.1080/0028825X.2013.859628

  23. Guiry, M.D. & Guiry, G.M. (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. (accessed 10 March 2021)

  24. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series 41: 95–98.  https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29

  25. Hamby, R.K. & Zimmer, E.A. (1988) Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae). Plant Systematics and Evolution 160: 29–37.

  26. Hanagata, N. (1998) Phylogeny of the subfamily Scotiellocystoideae (Chlorophyceae, Chlorophyta) and related taxa inferred from 18S ribosomal RNA gene sequence data. Journal of Phycology 34: 1049–1054.

  27. Hanagata, N. (2001) New species of Coelastrella and Scenedesmus (Chlorophyceae, Chlorophyta). Journal of Japanese Botany 76: 129–136.

  28. Hanagata, N., Karube, J. & Chihara, M. (1996) Bark-inhabiting green algae in Japan (1). Scenedesmus komarekii and Coelastrella multistriata var. multistriata (Scotiellocystoideae, Chlorellaceae, Chlorophycea). Journal of Japanese Botany 71: 87–97.

  29. Hegewald, E. (1997) Taxonomy and phylogeny of Scenedesmus. The Korean Journal of Phycology 12: 235–246.

  30. Hegewald, E. & Hanagata, N. (2000) Phylogenetic studies on Scenedesmaceae (Chlorophyta). Algological Studies 100: 29–49.  https://doi.org/10.1127/algol_stud/100/2000/29

  31. Hegewald, E. & Hanagata, N. (2002) Validation of the new combinations of Coelastrella and Neodesmus and the description of the new subfamily Desmodesmoideae of the Scendesmaceae (Chlorophyta). Algological Studies 105: 7–9.  https://doi.org/10.1127/algol_stud/105/2002/7

  32. Hegewald, E., Wolf, M., Keller, A. Friedl, T. & Krienitz, L. (2010) ITS2 sequence-structure phylogeny in the Scenedesmaceae with special reference to Coelastrum (Chlorophyta, Chlorophyceae), including the new genera Comasiella and Pectinodesmus. Phycologia 49: 325–335.  https://doi.org/10.2216/09-61.1

  33. Hollerbach, M.M. & Shtina, E.A. (1969) Soil algae. The science, Leningrad, 228 pp.

  34. Hoshina, R., Hayakawa, M.M., Kobayashi, M., Higuchi, R. & Suzaku, T. (2020) Pediludiella daitoensis gen. et sp. nov. (Scenedesmaceae, Chlorophyceae), a large coccoid green alga isolated from a Loxodes ciliate. Scientific Reports 10: 628.  https://doi.org/10.1038/s41598-020-57423-x

  35. Hu, Ch.-W., Chuang, L.-T., Yu, P.-Ch. & Chen, Ch.-N.N. (2013) Pigment production by a new thermotolerant microalga Coelastrella sp. F50. Food Chemistry 138: 2071–2078.  https://doi.org/10.1016/j.foodchem.2012.11.133

  36. Iyer, G., Nagle, V., Gupte, Ya.V., Desai, S., Iyer, M., Moramkar, N. & Sawant, V. (2015) Characterization of High Carotenoid Producing Coelastrella oocystiformis and its Anti-Cancer Potential. International Journal of Current Microbiology and Applied Sciences 4: 527–536.

  37. Kalina, T. (1964) Taxonomie der Gattung Coelastrella Chodat (Chlorococcales). Acta Universitatis Carolinae – Biologica 2: 139–148.

  38. Kalina, T. (1966) Morphologie und systematische Eingliderung der Art Scenedesmus costatus Schmidle (Chlorococcales). Preslia 38: 346–350.

  39. Kalina, T. & Puncŏchárŏvá, M. (1977) Taxonomy and morphological comparison of three chlorococcal algae: Scotiella oocystiformis Lund, Enallax coelastroides (Bohlin) Skuja and Scenedesmus costatus Schmidle. Algological Studies [Archiv für Hydrobiologie 51:] 19: 105–41.

  40. Kalina, T. & Punčochářová, M. (1987) Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae). Algological Studies [Archiv für Hydrobiologie 74:] 45: 473–521.

  41. Karpagam, R., Jawaharraj, K., Ashokkumar, B., Sridhar, Ja. & Varalakshmi, P. (2018) Unraveling the lipid and pigment biosynthesis in Coelastrella sp. M-60: Genomics-enabled transcript profiling. Algal Research 29: 277–289.  https://doi.org/10.1016/j.algal.2017.11.031

  42. Katana, A., Kwiatowski, J., Spalik, K., Zakryś, B., Szalacha, E. & Szymańska, H. (2001) Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. Journal of Phycology 37: 443–451.  https://doi.org/10.1046/j.1529-8817.2001.037003443.x

  43. Kaufnerová, V. & Eliáš, M. (2013) The demise of the genus Scotiellopsis Vinatzer (Chlorophyta). Nova Hedwigia 97: 415–428.  https://doi.org/10.1127/0029-5035/2013/0116

  44. Kawasaki, S., Yoshida, R., Ohkoshi, K. & Toyoshima, H. (2019) Coelastrella astaxanthina sp. nov. (Sphaeropleales, Chlorophyceae), a novel microalga isolated from an asphalt surface in midsummer in Japan. Phycological Research 67: 1–8.  https://doi.org/10.1111/pre.12412

  45. Kessler, E., Schäfer, M., Hümmer, C., Kloboucek, A. & Huss, V.A.R. (1997) Physiological, biochemical, and molecular characters for the taxonomy of the subgenera of Scenedesmus (Chlorococcales, Chlorophyta). Botanica Acta 110: 244–250.  https://doi.org/10.1111/j.1438-8677.1997.tb00636.x

  46. Komarek, J. & Fott, B. (1983) Chlorophyceae (Grünalgen). Ordnung Chlorococcales. Das Phytoplankton des Süβwassers 7: 1–1044.  https://doi.org/10.1111/j.1756-1051.1985.tb02080.x

  47. Korshikov, O.A. (1953) Subclass of Protococcineae. In: Roll, Y.V. (Ed.) Identifier of freshwater algae Ukr. SSR (5). Academy of Sciences of the USSR, Kiev, 440 pp.

  48. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.  https://doi.org/10.1093/molbev/msy096

  49. Leigh, J. & Bryant, D. (2015) Popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116.  https://doi.org/10.1111/2041-210X.12410

  50. Lewis, L.A. & Flechtner, V.R. (2004) Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of western North America. Journal of Phycology 40: 1127–1137.  https://doi.org/10.1111/j.1529-8817.2004.03235.x

  51. Lund, J.W.G. (1957) Four new green algae. Revue Algologique 3: 26–44.

  52. Lürling, M. (2003) Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annales de Limnologie - International Journal of Limnology 39: 85–101.  https://doi.org/10.1051/limn/2003014

  53. Mastitsky, S.E. & Shitikov, V.K. (2014) Statistical analysis and data visualization using R. Available from: http://r-analytics.blogspot.com (accessed 25 November 2021)

  54. Mikhailyuk, T., Glaser, K., Tsarenko, P., Demchenko, E. & Karsten, U. (2019) Composition of biological soil crusts from sand dunes of the Baltic Sea coast in the context of an integrative approach to the taxonomy of microalgae and cyanobacteria. European Journal of Phycology 54: 263–290.  https://doi.org/10.1080/09670262.2018.1557257

  55. Minyuk, G., Chelebieva, E., Chubchikova, I., Dantsyuk, N., Drobetskaya, I., Sakhon, E., Chekanov, K. & Solovchenko, A. (2017) Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids. Algae 32: 245–259.  https://doi.org/10.4490/algae.2017.32.8.6

  56. Neofotis, P., Huang, A., Sury, K., Chang, W., Joseph, F., Gabr, A., Twary, S., Qiu, W., Holguin, O. & Polle, J.E. (2016) Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algological Research 15: 164–78.  https://doi.org/10.1016/j.algal.2016.01.007

  57. Oltmanns, F. (1904) Morphologie und Biologie der Algen. I.G. Fischer, Jena, 754 pp.

  58. Patova, E.N. & Novakovskaya, I.V. (2018) Soil algae of the Northeastern European Russia. Novosti sistematiki nizshikh rastenii 52: 311–353. https://doi.org/10.31111/nsnr/2018.52.2.311

  59. Punčochářová, M. & Kalina, T. (1981) Taxonomy of the genus Scotiellopsis Vinatzer (Chlorococcales, Chlorophyta). Algological Studies [Archiv für Hydrobiologies 60:] 27: 119–147.

  60. Punčochářová, M., Kalina, T. & Truncova, E. (1976) Culture Collection of Algae at the Department of Botany, Charles University in Prague. Novitates Botanicae ex Universitate Carolina 1973–1975: 1–23.

  61. Reisigl, H. (1964) Zur Systematik und Ökologie alpiner Bodenalgaen. Österreichische Botanische Zeitschrift 111: 402–498.

  62. Schultz, J., Müller, T., Achtziger, M., Seibel, P.N., Dandekar, T. & Wolf, M. (2006) The internal transcribed spacer 2 database-a web server for (not only) low level phylogenetic analyses. Nucleic Acids Research 34: 704–707.  https://doi.org/10.1093/nar/gkl129

  63. Sciuto, K., Lewis, L.A., Verleyen, E., Moro, I. & La Rocca, N. (2015) Chodatodesmus australis sp. nov. (Scenedesmaceae, Chlorophyta) from Antarctica, with the emended description of the genus Chodatodesmus, and circumscription of Flechtneria rotunda gen. et sp. nov. Journal of Phycology 51: 1172–1188.  https://doi.org/10.1111/jpy.12355

  64. Seibel, P.N., Müller, T., Dandekar, T., Schultz, J. & Wolf, M. (2006) 4SALE - A tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 7: 498.  https://doi.org/10.1186/1471-2105-7-498

  65. Seibel, P.N., Müller, T., Dandekar, T. & Wolf, M. (2008) Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Research Notes 1: 91.  https://doi.org/10.1186/1756-0500-1-91

  66. Shihira, I. & Krauss, R.W. (1965) Chlorella. Physiology and taxonomy of forty-one isolates. University of Maryland, Maryland, 97 pp.

  67. Skrebovska, S.V. & Kostikov, I.Yu. (2012) Scotiellopsis levicostata (Chlorophyta) in the Scenedesmaceae. Chornomorski botanical journal 8: 401–412.

  68. Skuja, H. (1959) Gloeococcus bavaricus n. sp. und Coelastrella compacta n. sp. Protoplasma 50: 493–497.

  69. Song, M.A. & Lee, O.M. (2014) A study of newly recorded genera and species of aerial algae in the order Chlorococcales (Chlorophyta) from the Hongcheon-river, Korea. Journal of Ecology and Environment 37: 315–325.  https://doi.org/10.5141/ecoenv.2014.034

  70. Starr, R.C. & Zeikus, J.A. (1993) UTEX: The Culture Collection of Algae at the University of Texas at Austin. Journal of Phycology 29: 1–106.

  71. Terlowa, E.F. & Lewis, L.A. (2019) A new species of Tetradesmus (Chlorophyceae, Chlorophyta) isolated from desert soil crust habitats in southwestern North America. Plant and Fungal Systematics 64: 25–32.  https://doi.org/10.2478/pfs-2019-0004

  72. Trenkwalder, H. (1975) Neue Bodenalgen aus Föhrenwäldern im Raum von Brixen (Südtirol, Italien). Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck 62: 7–19.

  73. Tschaikner, A., Gärtner, G. & Kofler, W. (2008) Coelastrella aeroterrestrica sp. nov. (Chlorophyta, Scenedesmoideae) – a new, obviously often overlooked aeroterrestrial species. Algological Studies 128: 11–20.  https://doi.org/10.1127/1864-1318/2008/0128-0011

  74. Tschaikner, A., Ingolić, E., Stoyneva, M.P. & Gärtner, G. (2007) Аutosporulation in the soil alga Coelastrella terrestris (Chlorophyta, Scenedesmaceae, Scenedesmoideae). Phytologia balcanica 13: 29–34.

  75. Uzunov, B.A., Stoyneva, M.P., Gärtner, G. & Kofler, W. (2008) First record of Coelastrella species (Chlorophyta: Scenedesmaceae) in Bulgaria. Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck 95: 27–34.

  76. Vinatzer, G. (1975) Neue Bodenalgen aus den Dolomiten. Plant Systematics and Evolution 123: 213–235.

  77. Wang, Q., Song, H., Liu, X., Liu, B., Zhu, H., Hu, Z. & Liu, G. (2019a) Morphology and molecular phylogeny of coccoid green algae Coelastrella sensu lato (Scenedesmaceae, Sphaeropeales), including the description of three new species and two new varieties. Journal of Phycology 55: 1290–1305.  https://doi.org/10.1111/jpy.12915

  78. Wang, Q., Song, H., Liu, X., Zhu, H., Zhengyu, Hu & Liu, G. (2019b) Deep genomic analysis of Coelastrella saipanensis (Scenedesmaceae, Chlorophyta): comparative chloroplast genomics of Scenedesmaceae. European Journal of Phycology 54: 52–65.  https://doi.org/10.1080/09670262.2018.1503334

  79. Wang, Q., Liu, X., Li, S., Xiong, Q., Hu, Z. & Liu, G. (2020) Cryptic species inside the genus Hariotina (Scenedesmaceae, Sphaeropleales), with descriptions of four new species in this genus. European Journal of Phycology 55: 373–383.  https://doi.org/10.1080/09670262.2020.1737968

  80. White, T.J., Bruns, T.D., Lee, S.B. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A. (Ed.) PCR protocols: A Guide to Methods and Applications. Academic Press, San Diego. pp. 315–322.

  81. Zou, Sh., Fei, C., Wang, Ch., Gao, Zh., Bao, Ya., He, M. & Wang, Ch. (2016) How DNA barcoding can be more effective in microalgae identification: a case of cryptic diversity revelation in Scenedesmus (Chlorophyceae). Scientific Reports 6: 1–12.  https://doi.org/10.1038/srep36822