Skip to main content Skip to main navigation menu Skip to site footer
Article
Published: 2021-11-11

Dlhawksworthia flavoparmeliae sp. nov., a new endolichenic fungus in Phaeosphaeriaceae

College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China
College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China
College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China
College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China
Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China
Ascomycetes Dematiopleospora Hawksworthiana Pleosporales Yunnan Province Fungi

Abstract

The genus Dlhawksworthia presently includes three species. All the previously described species have been isolated from plants. Besides, none of these three species have ever been recorded in China. We conducted surveys in various regions of China to isolate and identify endolichenic fungi associated with diverse lichen species. During these surveys, we isolated both previously known and undescribed fungi associated with lichens. Among these, there was an isolate of an unknown fungus. The morphological and molecular analyses indicated that this isolate represented a new species from the genus Dlhawksworthia. As a consequence, we described this fungus as Dlhawksworthia flavoparmeliae sp. nov. This is the first report of Dlhawksworthia isolated from a lichen in China and globally.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.  http://doi.org/10.1016/S0022-2836(05)80360-2

  2. Arnold, A.E., Miadlikowska, J., Higgins, K.L., Sarvate, S.D., Gugger, P., Way, A., Hofstetter, V., Kauff, F. & Lutzoni, F. (2009) A phylogenetic estimation of trophic transition networks for ascomycetous Fungi: Are lichens cradles of symbiotrophic Fungal diversification? Systematic Biology 58: 283–297.  http://doi.org/10.1093/sysbio/syp001

  3. Carbone, I. & Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556.  http://doi.org/10.2307/3761358

  4. Chaiwan, N., Wanasinghe, D.N., Camporesi, E., Tibpromma, S., Boonmee, S., Lumyong, S. & Hyde, K.D. (2019) Molecular taxonomy reveals the sexual morph of Nodulosphaeria digitalis in Phaeosphaeriaceae from Campanula trachelium in Italy. Phytotaxa 400: 1–13.  http://doi.org/10.11646/phytotaxa.400.1.1

  5. Hawksworth, D.L. & Honegger, R. (1994) The lichen thallus: asymbiotic phenotype of nutritionally specialized fungi and its response to gall producers. In: Williams, M.A.J. (Ed.) Plant galls: organisms, interactions, populations. Oxford, UK: Clarendon Press, pp. 77–98.

  6. Huang, S., Jeewon, R., Wanasinghe, D.N., Manawasinghe, I.S., Bulgakov, T.S., Hyde, K.D. & Kang, J. (2017) Phylogenetic taxonomy of Dematiopleospora fusiformis sp. nov. (Phaeosphaeriaceae) from Russia. Phytotaxa 316: 239–249.  http://doi.org/10.11646/phytotaxa.316.3.3

  7. Hyde, K.D., Hongsanan, S., Jeewon, R., Bhat, D.J., McKenzie, E.H.C., Jones, E.B.G., Phookamsak, R., Ariyawansa, H.A., Boonmee, S., Zhao, Q., Abdel-Aziz, F.A., Abdel Wahab, M.A., Banmai, S., Chomnunti, P., Cui, B.-K., Daranagama, D.A., Das, K., Dayarathne, M.C., Silva, N.I.de., Dissanayake, A.J., Doilom, M., Ekanayaka, A.H., Gibertoni, T.B., Go´es-Neto, A., Huang, S.-K., Jayasiri, S.C., Jayawardena, R.S., Konta, S., Lee, H.B., Li, W.-J., Lin, C.-G., Liu, J.-K., Lu, Y.-Z., Luo, Z.-L., Manawasinghe, I.S., Manimohan, P., Mapook, A., Niskanen, T., Norphanphoun, C., Papizadeh, M., Perera, R.H., Phukhamsakda, C., Richter, C., Santiago, A.L.C.M.de A., Drechsler-Santos, E.R., Senanayake, I.C. & Tanaka, K. (2016) Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270.  http://doi.org/10.1007/s13225-016-0373-x

  8. Katoh, K., Rozewicki, J. & D. Yamada, K. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20:1–7.  https://doi.org/10.1093/bib/bbx108

  9. Kumar, S., Tamura, K., Peterson, D., Peterson, N., Stecher, G. & Nei, M. (2011) MEGA5:Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.  http://doi.org/10.1093/molbev/msr121

  10. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Dura, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.  https://doi.org/10.1093/bioinformatics/bts199

  11. Masumoto, H. & Degawa, Y. (2019) The effect of surface sterilization and the type of sterilizer on the genus composition of lichen-inhabiting fungi with notes on some frequently isolated genera. Mycoscience 60: 331–342.  https://doi.org/10.1016/j.myc.2019.07.004

  12. Miadlikowska, J., Arnold, A.E. & Lutzoni, F. (2004) Diversity of cryptic fungi inhabiting healthy lichen thalli in a temperate and tropical forest. Ecological Society of America Annual Meet 89: 349–350.

  13. Miller, M.A., Pfeiffer, W.T. & Schwartz, T. (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010. New Orleans, pp. 1–8. http://doi.org/10.1109/gce.2010.5676129

  14. Mitrović, T., Stamenkovic, S., Cvetković, V., Nikolic, M., Baosic, R., Mutic, J., Andjelkovic, T. & Bojić, A. (2012) Epiphytic lichen Flavoparmelia caperata as a sentinel for trace metal pollution. Journal of the Serbian Chemical Society 77: 1301–1310.  http://doi.org/10.2298/JSC111124031M

  15. Nieuwenhuis, B.P.S. & James, T.Y. (2016) The frequency of sex in fungi. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 1706.  https://doi.org/10.1098/rstb.2015.0540

  16. Nylander, J.A.A., Wilgenbusch, J.C., Warren, D.L. & Swofford, D.L. (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581–583.  https://doi.org/10.1093/bioinformatics/btm388

  17. Pathak, A., Mishra, R.K., Shukla, S.K., Kumar, R., Pandey, A., Pandey, M. & Dikshit, A. (2016) Flavoparmelia caperata, a host for Beauveria sp. in subalpine forest of Chakrata district, Uttarakhand, India, and natural selection in B. bassiana. Asian Journal of Microbiology, Biotechnology and Environmental Sciences 18: 981–998.Phookamsak, R., Liu, J.-K., McKenzie, E.H.C., Manamgoda, D.S., Ariyawansa, H., Thambugala, K.M., Dai, D.-Q., Camporesi, E., Chukeatirote, E., Wijayawardene, N.N., Bahkali, A.H., Mortimer, P.E., Xu, J.-C. & Hyde, K.D. (2014) Revision of Phaeosphaeriaceae. Fungal Diversity 68: 159–238.  https://doi.org/10.1007/s13225-014-0308-3

  18. Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.  https://doi.org/10.1093/bioinformatics/btg180

  19. Stamatakis, A., Ludwig, T. & Meier, H. (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463.  https://doi.org/10.1093/bioinformatics/bti191

  20. Suryanarayanan, T.S. & Thirunavukkarasu, N. (2017) Endolichenic fungi: the lesser known fungal associates of lichens. Mycology 8: 189–196.  https://doi.org/10.1080/21501203.2017.1352048

  21. Tripathi, M., Joshi, Y. & Gupta, R.C. (2014) Assessment of endolichenic fungal diversity in some forests of Kumaun Himalaya. Current science 107: 745–748.

  22. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246.  https://doi.org/10.1128/jb.172.8.4238-4246.1990

  23. Wanasinghe, D.N. & Hyde, K.D. (2018) Nomenclatural novelties. Index Fungorum 357: 1.

  24. Wanasinghe, D.N., Phukhamsakda, C., Hyde, K.D., Jeewon, R., Lee, B.H., Jones, E.B.G., Tibpromma, S., Tennakoon, D.S., Dissanayake, A.J., Jayasiri, S.C., Gafforov, Y., Camporesi, E., Bulgakov, T.S., Ekanayake, A.H., Perera, R.H., Samarakoon, M.C., Goonasekara, I.D., Mapook, A., Li, W.J., Senanayake, I.C., Li, J.-F., Norphanphoun, C., Doilom, M., Bahkali, A.H., Xu, J.-C., Mortimer, P.E., Tibell, L., Tibell, S. & Karunarathna, S.C. (2018) Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity 89: 1–236.  https://doi.org/10.1017/S0024282919000483

  25. White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfrand, D.H., Sninsky, J.J. & White, T.J. (eds.) PCR Protocols. Academic Press, San Diego, pp. 315–322.  https://doi.org/10.1016/b978-0-12-372180-8.50052-1

  26. Yoshino, K., Yamamoto, K., Masumoto, H., Degawa, Y., Yoshikawa, H., Harada, H. & Sakamoto, K. (2020) Polyol-assimilation capacities of lichen-inhabiting fungi. The Lichenologist 52: 49–59.  https://doi.org/10.1017/S0024282919000483

  27. Zhang, Y.-J., Zhang, S., Liu, X.-Z., Wen, H.-A. & Wang, M. (2010) A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Letters in Applied Microbiology 51: 114–118.  https://doi.org/10.1111/j.1472-765X.2010.02867.x

  28. Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplication of mitochondrial small subunite ribosomal DNA of lichen-forming Ascomycetes. The lichenologist 31:511–516.  https://doi.org/10.1017/S0024282999000663