Skip to main content Skip to main navigation menu Skip to site footer
Published: 2021-11-11

Adiantum japonicum, a new species of the Adiantum pedatum complex (Pteridaceae) from Japan

College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
Narahashi 1-363, Higashiyamato, Tokyo 207-0031, Japan
Department of Biological Science, Faculty of Advanced Science and Technology, KumamotoUniversity, Kumamoto 860-8555, Japan
Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, D.C. 20013-7012 USA
Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
chloroplast markers cytotype disjunction erect rhizome Pteridophytes


The Adiantum pedatum complex is disjunctly distributed in North America and eastern Asia. In this study, we carried out a detailed morphological study based on 137 specimens representing the biogeographic diversity of this complex. The sequences of eight chloroplast markers of 35 samples were analyzed with maximum likelihood and Bayesian inference. The morphological and phylogenetic analyses support the recognition of a new species of the A. pedatum complex from Japan. We propose the new species as A. japonicum based on the examinations of specimens from Japan and the comparative analyses of the whole complex. This new species can be distinguished from A. pedatum by the erect rhizome and shows significant molecular differences from other species in this complex. A taxonomic description with detailed morphological characters of the new species is presented.


  1. Alzohairy, A. (2011) BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences 2: 60–61. []

  2. Christ, H. (1902) Filices Bodinieriauae. Bulletin de l’Académie Internationale de Géographie Botanique, sér. 3, 11 (153–154): 189–276. []

  3. Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 9: 11–15. []

  4. Galan, J.M.G.Y., Prada, C., Rolleri, C., Ainouche, A. & Vicent, M. (2013) CpDNA supports the identification of the major lineages of American Blechnum (Blechnaceae, Polypodiopsida) established by morphology. Turkish Journal of Botany 37: 769–777.

  5. Huiet, L., Li, F.W., Kao, T.T., Prado, J., Smith, A.R., Schuettpelz, E. & Pryer, K.M. (2018) A worldwide phylogeny of Adiantum (Pteridaceae) reveals remarkable convergent evolution in leaf blade architecture. Taxon 67: 488–502.

  6. Iwatsuki, K. (1995) Parkeriaceae. In: Iwatsuki, K., Yamazaki, T., Boufford, D.E. & Ohba, H. (eds.) Flora of Japan. Vol. 1. Pteridophyta and Gymnospermae. Kodansha, Tokyo, pp. 77–85.

  7. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S.S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.

  8. Kewenses, D. (1898) Plantarum Novarum in Herbario Horti Regii Conservatarum. Decades XXXI.-XXXIII. Bulletin of Miscellaneous Information (Royal Botanic Gardens, Kew) 141: 224–234.

  9. Kramer, K.U. & Green, P.S. (1990) The families and genera of vascular plants: Volume 1–Pteridophytes and Gymnosperms. Berlin, Spinger Verlag.

  10. Lee, J.S., Kim, S.H., Lee, S., Maki, M., Otsuka, K., Kozhevnikov, A.E., Kozhevnikova, Z.V., Wen, J. & Kim, S.C. (2019) New insights into the phylogeny and biogeography of subfamily Orontioideae (Araceae). Journal of Systematics and Evolution 57: 616–632.

  11. Linnaeus, C. (1753) Species plantarum (Vol. 2). Holmiae :Impensis Laurentii Salvii.

  12. Lu, J.-M., Li, D.-Z., Lutz, S., Soejima, A., Yi, T.S. & Wen, J. (2011) Biogeographic disjunction between Eastern Asia and North America in the Adiantum pedatum complex (Pteridaceae). American Journal of Botany 98: 1680–1693.

  13. Nagalingum, N.S., Schneider, H. & Pryer, K.M. (2007) Molecular phylogenetic relationships and morphological evolution in the heterosporous fern genus Marsilea. Systematic Botany 32: 16–25.

  14. Nakato, N. & Kato, M. (2005) Cytogeography of the Adiantum pedatum Complex (Pteridaceae, Subfamily Adiantoideae). Acta Phytotaxonomica et Geobotanica 56: 85–96.

  15. Paris, C.A. (1991a) Adiantum viridimontanum, a new maidenhair fern in eastern North America. Rhodora 93 (874): 105–121. []

  16. Paris, C.A. (1991b) Molecular systematics of the Adiantum pedatum complex: Phylogeny, biogeography, and a taxonomic reconsideration of the group in North America. Ph.D. dissertation, University Vermont, Burlington, Vermont.

  17. Paris, C.A. & Windham, M.D. (1988) A biosystematic investigation of the Adiantum pedatum complex in eastern North America. Systematic Botany 13: 240–255 .

  18. PPG, I. (2016) A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54: 563–603. https://doi: 10.1111/jse.12229

  19. Ruprecht, F. (1845) Distributio cryptogamarum vascularium in Imperio Rossico. Buchdruckerei. der Kaiserlichen Akademie der Wissenschaften. St. Petersburg.

  20. Ronquist, F., Teslenko, M., Mark, P.V.Der, Ayres, D.L., Darling, A.E., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Systematic Biology 61: 539–542.

  21. Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W.S., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E. & Small, R.L. (2005) The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142–166.

  22. Small, R.L., Lickey, E.B., Shaw, J. & Hauk, W.D. (2005) Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae. Molecular Phylogenetics and Evolution 36: 509–522.

  23. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.

  24. Thiers, B. (2020) [continuously updated] Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from: (accessed 10 November 2021)

  25. Wen, J. (2001) Evolution of eastern Asian–eastern North American biogeographic disjunctions: a few additional issues. International Journal of Plant Sciences 162 (S6): S117–S122.

  26. Wen, J., Nie, Z.-L. & Ickert-Bond, S.M. (2016) Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. Journal of Systematics and Evolution 54: 469–490.

  27. Xiang, J.-Y., Wen, J. & Peng, H. (2015) Evolution of the eastern Asian–North American biogeographic disjunctions in ferns and lycophytes. Journal of Systematics and Evolution 53: 2–32.

  28. Zhou, W., Xiang, Q.-Y.(J.) & Wen, J. (2020) Phylogenomics, biogeography, and evolution of morphology and ecological niche of the eastern Asian–eastern North American Nyssa (Nyssaceae). Journal of Systematics and Evolution 58: 571–603. https://doi:10.1111/jse.12599