

http://dx.doi.org/10.11646/phytotaxa.266.4.2

The holomorph of *Parasarcopodium* (*Stachybotryaceae*), introducing *P. pandanicola sp. nov.* on *Pandanus* sp.

SAOWALUCK TIBPROMMA^{1,2,3,4,5}, SARANYAPHAT BOONMEE², NALIN N. WIJAYAWARDENE^{2,3,5}, SAJEEWA S.N. MAHARACHCHIKUMBURA⁶, ERIC H. C. McKENZIE⁷, ALI H. BAHKALI⁸, E.B. GARETH JONES⁸, KEVIN D. HYDE^{1,2,3,4,5,8} & ITTHAYAKORN PROMPUTTHA^{9,*}

¹Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People's Republic of China

²Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand

³School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand

⁴World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China

⁵Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand

⁶Department of Crop Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University, P.O. Box 34, AlKhoud 123, Oman

⁷Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand

⁸Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia

⁹Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand

*Corresponding author: e-mail: itthayakorn.p@cmu.ac.th

Abstract

Collections of microfungi on *Pandanus* species (*Pandanaceae*) in Krabi, Thailand resulted in the discovery of a new species in the genus *Parasarcopodium*, producing both its sexual and asexual morphs. In this paper, we introduce *P. pandanicola sp. nov.*, with an illustrated account. Evidence for the new species is provided by distinct morphology and phylogenetic analyses. This is also the first report of the sexual morph of *Parasarcopodium*. The phylogenetic trees used Maximum Likelihood and Bayesian analyses of combined LSU, SSU, TEF1 and RPB2 sequence data to show the placement of the new species in *Stachybotryaceae*.

Key words: filiform conidia, Hypocreales, Pandanaceae, sexual morph

Introduction

The order *Hypocreales* (*Sordariomycetes*) was introduced by Lindau (1897), with *Hypocreaceae* (De Notaris 1844) as the type family. Members of the *Hypocreales* are highly diverse and distributed worldwide, in temperate regions they far exceed those known for the tropics (Põldmaa 2011). Maharachchikumbura *et al.* (2015) accepted nine families (i.e., *Bionectriaceae, Clavicipitaceae, Cordycipitaceae, Hypocreaceae, Nectriaceae, Niessliaceae, Ophiocordycipitaceae, Stachybotryaceae, Tilachlidiaceae*) in *Hypocreales* based on their backbone tree for *Sordariomycetes*.

Stachybotryaceae was introduced with Stachybotrys (Corda 1837) as the type genus and S. chartarum (Ehrenb.) S. Hughes as the type species (Wang et al. 2015). The family was established to accommodate the genera Myrothecium, Peethambara and Stachybotrys. In earlier publications, these three genera were classified in the order Hypocreales, genera incertae sedis, although phylogenetic studies have shown them to be separated from other families in Hypocreales (Castlebury et al. 2004, Summerbell et al. 2011). Recently, Maharachchikumbura et al. (2015) provide outline of Sordariomycetes with all genera in the family.

Parasarcopodium is a hyphomycetous genus, which was introduced by Mel'nik *et al.* (2004) with *P. ceratocaryi* Mel'nik *et al.* as the type species. The type species was collected from *Ceratocaryum decipiens* (*Restionaceae*) in the fynbos of the Cape Floristic Region of South Africa. *Parasarcopodium* was earlier placed in family *Bionectriaceae* (Mel'nik *et al.* 2004), recently *Parasarcopodium* was including in family *Stachybotryaceae* base on backbone tree for *Sordariomycetes* (Maharachchikumbura *et al.* 2015). The genus is characterized by macronematous, mononematous,

hyaline to subhyaline, septate, branched conidiophores, monophialidic, cylindro-lageniform or oblong ampulliform conidiogenous cells and cylindrical, aseptate conidia with amorphous mucoid appendages (Mel'nik *et al.* 2004).

In this study, we collected the sexual and asexual morphs of *Parasarcopodium* from the same *Pandanus* sp. host in Krabi, southern Thailand and we describe it as a new species with an illustrated account and phylogenetic analysis.

Materials and methods

Sample collection and specimen examination

Fresh specimens of *Parasarcopodium pandanicola* were collected from Muang District, Krabi Province, Thailand on dead leaves of *Pandanus* sp. (*Pandanaceae*) in December 2014. The leaves were placed in paper bags and taken to the laboratory. They were examined using a Carl Zeiss GmbH (AxioCam ERC 5 S) stereo microscope. Fruiting bodies were rehydrated in water, lactic acid and 5% KOH. Sections were cut using both a razor blade and microtome to observe characters using a Nikon ECLIPSE 80i compound microscope. Photographs were taken with a Canon 600D digital camera mounted on the microscope. All microscopic structures were measured using Tarosoft[®] Image Framework program v.0.9.0.7.

Description of cultures

Malt extract agar (MEA) was used for single spore isolation following the method described in Chomnunti *et al.* (2014). Single spore isolation from sexual morph and asexual morph were located under the stereomicroscope, aseptically transferred to MEA plates after spores/conidia germinating and incubated at room temperature for 6 weeks. Sexual culture were subcultured and transferred to water agar (WA) media containing sterile toothpicks and pine needles (Phookamsak *et al.* 2015) and incubated at room temperature for 3 months to induce the asexual morph. After 3–5 weeks, on the WA cultures were checked for asexual structures. Herbarium specimens were deposited in Mae Fah Luang University Herbarium (MFLU), Chiang Rai, Thailand and Kunming Institute of Botany Academia Sinica (HKAS). The ex-type living cultures were deposited in the Mae Fah Luang University Culture Collection (MFLUCC). FacesofFungi numbers (FoF) and Index Fungorum (IF) numbers were obtained as explained in Jayasiri *et al.* (2015) and Index Fungorum 2016.

DNA extraction, PCR amplification and DNA sequencing

Isolates of sexual morphs and asexual morphs were grown on MEA for 6 weeks at room temperature. The fungal mycelium was scraped off and transferred to 1.5 ml micro centrifuge tubes. The fungal genomic DNA extraction was followed as detailed by Thambugala et al. (2015). The partial large subunit nuclear rDNA region (LSU) was amplified by using primer pairs LROR and LR5 (Vilgalys & Hester 1990). The partial small subunit nuclear rDNA region (SSU) was amplified by using primer pairs NS1 and NS4 (White et al. 1990). The partial RNA polymerase second largest subunit region (RPB2) was amplified by using primers fRPB2-5F and fRPB2-7cR (Liu et al. 1999). The amplification reactions were carried out with the following protocols Thambugala et al. (2015) and Daranagama et al. (2015), amplifications were performed in 25 µL of PCR mixtures containing 9.5 µL ddH₂O, 12.5 µL 2×PCR Master Mix (TIANGEN Co., China), 1 µL of DNA template, 1 µL of each primer (10 µM). Conditions of amplification for all regions consisted an initial denaturation step of 5 min at 95 °C and final elongation step of 10 minutes at 72 °C. For the LSU amplification, the 35 cycles consisted of denaturation at 94 °C for 1 minute, annealing at 53 °C for 50 seconds and elongation at 72 °C for 1.30 minute, for the SSU amplification, the 37 cycles consisted of denaturation at 94 °C for 1 minute, annealing at 54 °C for 50 seconds and elongation at 72 °C for 1 minute and for the RPB2 amplification, the 35cycles consisted of denaturation at 95 °C for 45 seconds, annealing at 57 °C for 50 seconds and elongation at 72°C for 1.30 minute. The PCR products were observed on 1% agarose electrophoresis gels stained with Ethidium bromide. Purification and sequencing of PCR products were carried at using the abovementioned PCR primer at Invitrogen Biotechnology Co., China.

Phylogenetic analyses

Sequences generated from this study were analyzed with similar sequences obtained from GenBank (Table 1). Single sequence alignments (LSU, SSU, TEF1, RPB2) were generated with MAFFT v.6.864b (Katoh & Standley 2015: http://mafft.cbrc.jp/alignment/server/) and manually improved with BioEdit v.7.2.5 (Hall 2004). Phylogenies used maximum likelihood (ML) analyses and Bayesian inference (BI) analyses for the dataset. Maximum likelihood

analysis (RAxML) was carried out using raxmlGUI v.0.9b2 (Silvestro & Michalak 2010) with bootstrap support for the branches generated with 1,000 replicates. A GTR substitution models comprised with a discrete gamma distribution (Silvestro & Michalak 2012).

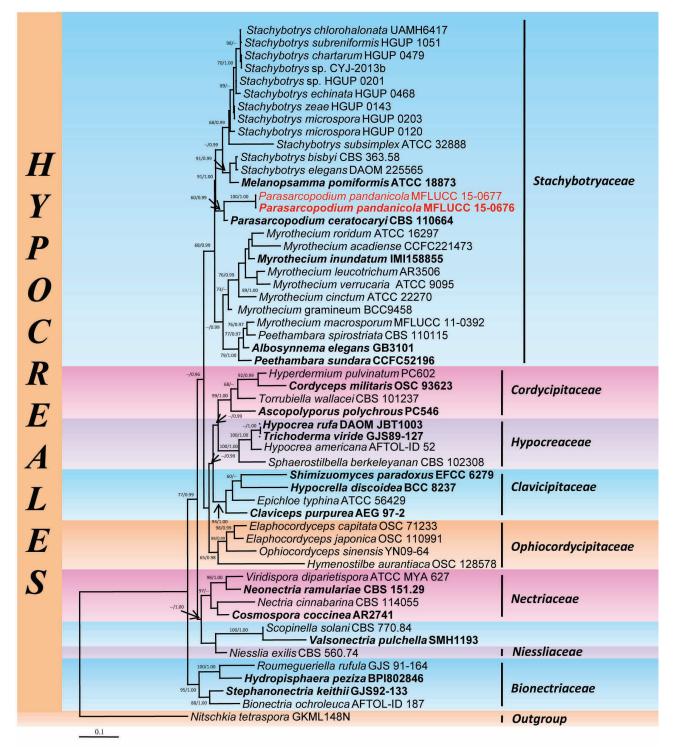
TABLE 1. Taxa used in the phylogenetic analyses and their GenBank accession numbers (ex-type strains are in bold, the new taxon is indicated with an asterisk).

Taxon	Culture Accession	GenBank Accession				
		LSU	SSU	TEF1	RBP2	
Albosynnema elegans	GB3101	AF193226	-	-	-	
Ascopolyporus polychrous	PC546	AY886546	-	DQ118745	DQ127236	
Bionectria ochroleuca	AFTOL-ID 187	DQ862027	DQ862044	DQ862029	DQ862013	
Claviceps purpurea	AEG 97-2	AF543789	AF543765	AF543778	-	
Cordyceps militaris	OSC 93623	AY184966	AY184977	DQ522332	-	
Cosmospora coccinea	AR2741	AY489734	AY489702	AY489629	-	
Elaphocordyceps capitata	OSC 71233	AY489721	AY489689	AY489615	DQ522421	
Elaphocordyceps japonica	OSC 110991	DQ518761	DQ522547	DQ522330	DQ522428	
Epichloe typhina	ATCC 56429	-	-	AF543777	DQ522440	
Hydropisphaera peziza	GJS92-101 = BPI802846	AY489730	AY489698	AY489625	-	
Hymenostilbe aurantiaca	OSC 128578	DQ518770	DQ522556	DQ522345	DQ522445	
Hyperdermium pulvinatum	PC602	DQ118738	-	-	-	
Hypocrea americana	AFTOL-ID 52	AY544649	AY544693	DQ471043	-	
Hypocrea rufa	DAOM JBT1003	JN938865	JN939042	-	-	
Hypocrella discoidea	BCC 8237	DQ384937	-	DQ384977	DQ452461	
Melanopsamma pomiformis	ATCC 18873	AY489709	AY489677	AY489604	-	
Myrothecium acadiense	CCFC221473	AY283563	-	-	-	
Myrothecium cinctum	ATCC 22270	AY489710	AY489678	AY489605	EF692512	
Myrothecium gramineum	BCC9458	FJ825379	FJ825369	-	-	
Myrothecium inundatum	IMI158855	AY489731	AY489699	AY489626	-	
Myrothecium leucotrichum	AR3506	AY489707	AY489675	AY489602	-	
Myrothecium macrosporum	MFLUCC 11-0392	KP744491	-	-	-	
Myrothecium roridum	ATCC 16297	AY489708	AY489676	AY489603	-	
Myrothecium verrucaria	ATCC 9095	AY489713	AY489681	AY489608	EF692514	
Nectria cinnabarina	CBS 114055	U00748	-	AF543785	DQ522456	
Neonectria ramulariae	CBS 151.29	HM042436	HQ840414	-	DQ789792	
Niesslia exilis	CBS 560.74	AY489720	AY489688	AY489614	-	
Nitschkia tetraspora	GKML148N	FJ968987	-	FJ969011	FJ968936	
Ophiocordyceps sinensis	YN09-64	JX968033	JX968028	-	JX968013	
Parasarcopodium ceratocaryi	CBS 110664	AY425026	-	-	-	
Parasarcopodium pandanicola*	MFLUCC 15-0676	KU708267	KU708269	-	KU70827	
Parasarcopodium pandanicola*	MFLUCC 15-0677	KU708268	KU708270	-	KU70827	
Peethambara spirostriata	CBS 110115	AY489724	AY489692	AY489619	_	

...Continued on next page

TABLE 1. (Continued)

Taxon	Culture Accession	GenBank Accession				
		LSU	SSU	TEF1	RBP2	
Peethambara sundara	CCFC52196	AY283546	-	-	-	
Roumegueriella rufula	GJS 91-164	EF469082	EF469129	EF469070	EF469116	
Scopinella solani	CBS 770.84	AY015632	AY015621	-	-	
Shimizuomyces paradoxus	EFCC 6279	EF469084	EF469131	-	EF469117	
Sphaerostilbella berkeleyanan	CBS 102308	U00756	AF543770	AF543783	DQ522465	
Stachybotrys bisbyi	CBS 363.58	AY554250	-	-	-	
Stachybotrys chartarum	HGUP 0479	KC305347	-	-	-	
Stachybotrys chlorohalonata	UAMH6417	AY489712	AY489680	AY489607	-	
Stachybotrys echinata	HGUP 0468	KC305358	-	-	-	
Stachybotrys elegans	DAOM 225565	JN938867	JN939040	-	-	
Stachybotrys microspora	HGUP 0203	KC305349	-	-	-	
Stachybotrys microspora	HGUP 0120	KC305353	-	-	-	
Stachybotrys sp.	HGUP 0201	KC305354	-	-	-	
Stachybotrys sp.	HGUP 0146	KC305345	-	-	-	
Stachybotrys subreniformis	HGUP 1051	KC305348	-	-	-	
Stachybotrys subsimplex	ATCC 32888	AY489711	AY489679	AY489606	-	
Stachybotrys zeae	HGUP 0143	KC305346	-	-	-	
Stephanonectria keithii	GJS92-133	AY489727	AY489695	AY489622	-	
Torrubiella wallacei	CBS 101237	AY184967	AY184978	EF469073	EF469119	
Trichoderma viride	GJS89-127	AY489726	-	-	-	
Valsonectria pulchella	SMH1193	AY346304	-	-	AY780199	
Viridispora diparietispora	ATCC MYA 627	AY489735	AY489703	AY489630	-	


The model of evolution was performed using MrModeltest 2.2 (Nylander 2004). Posterior probabilities (PP) (Rannala & Yang 1996, Zhaxybayeva & Gogarten 2002) were determined by Markov Chain Monte Carlo sampling (MCMC) in MrBayes v. 3.0b4 (Huelsenbeck & Ronquist 2001). Six simultaneous Markov chains were run for 5,100,000 generations and trees were sampled every 100th generation. The first 10,200 trees, representing the burn-in phase of the analyses were discarded, while the remaining trees (40,800) were used for calculating posterior probabilities in the majority rule consensus tree. Bayesian posterior probabilities (BYPP) equal or greater than 0.95 are given at the node. Phylograms were figured in Treeview (Page 1996) and reorganized in Microsoft power point (2007) and Adobe Photoshop version CS3 (Adobe Systems, USA). Sequences derived in this study were deposited in GenBank, and the alignments in TreeBASE (www.treebase.org) submission ID: 18869.

Results

Phylogenetic analyses

Fifty-five strains are included in the combined LSU, SSU, TEF1 and RPB2 analyses with *Nitschkia tetraspora* (GKML 148N) as the outgroup taxon. The dataset comprised 3,920 characters after alignment. A best scoring RAxML tree is shown in Fig. 1 with bootstrap support values of ML and values of the posterior probabilities (PP). The phylogenetic trees obtained from ML analysis gave similar results as previous studies in Maharachchikumbura *et al.* (2015). The

multi-gene showed *Parasarcopodium pandanicola* clustering with *Parasarcopodium ceratocaryi* with moderate bootstrap support (60% ML and 0.99 PP of multi-gene analyses) and separated from other genera in *Stachybotryaceae* (Fig 1). *Parasarcopodium pandanicola* shares morphological features similar to *P. ceratocaryi* (asexual morph) with conidia that are hyaline, cylindrical, aseptate and distinctly guttulate (Figs 3, 4).

FIGURE 1. The best scoring RAxML tree based on combined LSU, SSU, TEF1 and RPB2 sequenced data of taxa from the order *Hypocreales*. Bootstrap support values for maximum likelihood greater than 60 % and Bayesian posterior probabilities greater than 0.95 are given at the nodes. The tree is rooted to *Nitschkia tetraspora* (GKML148N). Ex-type strains are in bold. The newly generated sequences are in red.

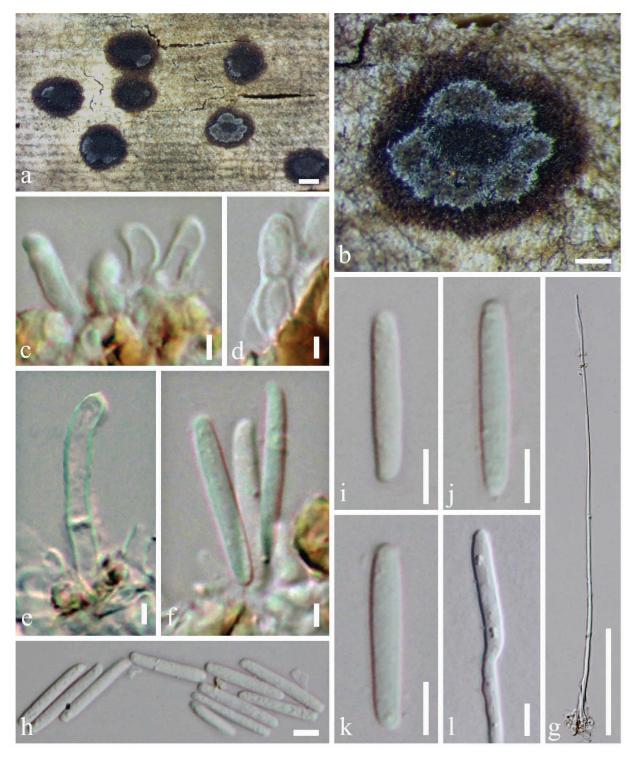
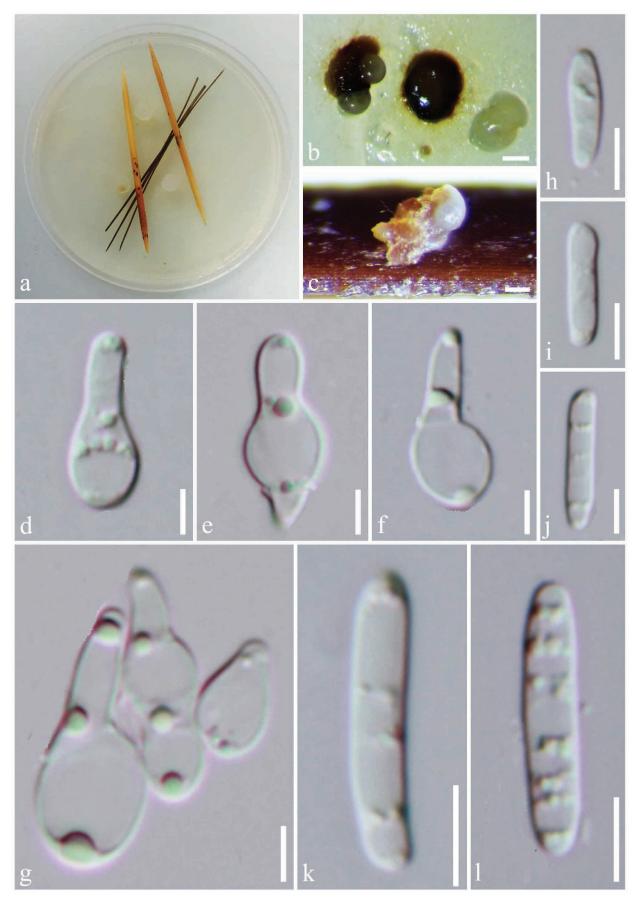


FIGURE 2. *Parasarcopodium pandanicola* (MFLU15-3280, holotype). a Host of the fungus (*Pandanus* sp., *Pandanaceae*). b Appearance of fungus on host surface. c Cross section of ascoma. d Ostioles with periphysoids. e Section of peridium. f Pseudoparaphyses. g-h Asci. i-m Ascospores. n Germinated ascospore. Scale bars: b=200 μm, c=20 μm, d=e=10 μm, f=2 μm, g-h=10 μm, i-n=5 μm.


Taxonomy

Parasarcopodium pandanicola Tibpromma & K.D. Hyde, *sp. nov.* (Fig. 2, 3) *Index Fungorum number*: IF 551710, *FacesofFungi number*: FoF 01627

Etymology:—named for its occurrence on the host plant family (*Pandanaceae*). **Holotype:**—MFLU 15–3280.

FIGURE 3. *Parasarcopodium pandanicola* (MFLU15-3280, **holotype**). **a–b** Specimen with stroma on *Pandanus* sp. **c–f** Conidiophores. **g** Papilla. **h–k** Hyaline conidia. I Germinating conidium. Scale bars: $a = 500 \mu m$, $b = 200 \mu m$, $c-f = 2 \mu m$, $g = 20 \mu m$, $h-l = 5 \mu m$.

FIGURE 4. *Parasarcopodium pandanicola* (MFLUCC15-0677, **ex-type culture**). **a** Asexual morph on water agar (WA) after 2 weeks (method from Phookamsak *et al.* 2015). **b** Conidiomata produced on WA. **c** Conidiomata produced on bamboo stalk. **d**–**g** Conidiophores. **h–l** Hyaline conidia. Scale bars: $b = 200 \mu m$, $c = 100 \mu m$, $d-g = 2 \mu m$, $h-l = 5 \mu m$.

Saprobic on leaves of Pandanus sp. Sexual morph: Ascomata 90–115 µm high, 85–110 µm diam. (\bar{x} =103.2 × 98.7 µm, n=10), scattered or clustered, superficial on thin subiculum, distinct, uniloculate, solitary, globose, ostioles central with periphysoids, without hairs, smooth-walled, black. *Peridium* 11–25 µm wide, thick-walled, composed of 3–14 layers, of brown to reddish brown cells, arranged in a *textura angularis* to *textura globosa. Hamathecium* of numerous, 1.9–3.5 µm wide, septate paraphyses, branched, guttulate, delicate. *Asci* 54–62 × 10–12 µm (\bar{x} =57.6 × 11.1 µm, n=15), 8-spored, unitunicate, cylindrical to cylindric-clavate, long pedicellate with knob-like pedicel, apically rounded with J-apical ring. *Ascospores* 12–17 × 4–5 µm (\bar{x} =14.4 × 5.2 µm, n=15), overlapping 1–2-seriate, fusiform, 1-septate, slightly constricted at septum, upper cell broader and shorter than lower cell, apices obtuse, with distinct guttules, smooth-walled, without a mucilaginous sheath. **Asexual morph from host plant**: Hyphomycetous-like. *Conidiomata* stromatic, sporodochial, superficial on host surface after ascomata deteriorate, scattered, solitary, orange, with long papilla. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* 5–14 µm high, 3–4 µm diam. (\bar{x} =9.1 × 3.6 µm, n=15), simple, smooth, short, enteroblastic, phialidic, ampulliform, hyaline, 1-septate at the base, smooth-walled. *Conidia* 10–20 × 2–3 µm (\bar{x} =15.2 × 2.7 µm, n=40), hyaline, filiform, straight to slightly curved, aseptate, smooth and thick-walled, distinctly guttulate, without appendages.

Culture characteristics:—on MEA reaching 2 cm diam. after 4 weeks at room temperature, circular, entire, wrinkled and flat on media, yellow-white and thick.

Material examined:—THAILAND, Krabi Province, Muang District, on dead leaf of *Pandanus* sp., 4 December 2014, S Tibpromma & KD Hyde, SF14-035 (MFLU 15–3280, holotype), HKAS92501 paratype, ex-type living culture, MFLUCC 15–0676, MFLUCC 15–0677. *Ibid*. (MFLU15-3410 isotypes).

Note:—*Parasarcopodium pandanicola* is introduced as a new species and comprises both sexual and asexual morphs from the same host. The asexual morph has conidia of a similar size to those of *P. ceratocaryi* ($10-20 \times 2-3$ µm in *P. pandanicola* vs. (12)14–18(19.5) × (2)2.5–3 µm in *P. ceratocaryi*), however, *P. ceratocaryi* has a distinctive mucilaginous appendage at either end of the conidia (Mel'nik *et al.* 2004), a feature that is lacking in *P. pandanicola*. The sexual morph was compared with *Stachybotrys oleronensis* (sexual morph) and our new species differs from *S. oleronensis* in having superficial, globose ascomata, without hairs, cylindrical to cylindric-clavate asci and fusiform, 1-septate ascospores, slightly constricted at septum and without a mucilaginous sheath. *Stachybotrys oleronensis* has subglobose to obpyriform ascomata, immersed in host tissues, clavate asci and ellipsoidal to fusiform, 1-septate ascospores, not constricted at the septum, with 1–2 guttules in each cell (Crous *et al.* 2013).

Discussion

Parasarcopodium pandanicola is described as a new species based on morphological and phylogenetic analyses. Both morphs of *Parasarcopodium pandanicola* were found on the same host and isolated separately via single spore isolation, and later we found same asexual morph in water agar media. The evidence based on the DNA isolated from both asexual and sexual morph on the same host were compared and they are identical. Phylogenetic analyses of multi-gene analyses showed *P. pandanicola* always grouped with the genus *Parasarcopodium* with good bootstrap support (Fig. 1). *Parasarcopodium pandanicola* has different features from the asexual morph of *P. ceratocaryi* (Mel'nik *et al.* 2004) and sexual morph of *Stachybotrys oleronensis* (Crous *et al.* 2013). However, this is also the first record of the sexual morph for *Parasarcopodium* as Mel'nik *et al.* (2004) found only the asexual morph.

Acknowledgements

K.D. Hyde is visiting Professor at King Saud University, Saudi Arabia. Saowaluck Tibpromma thanks the Mushroom Research Foundation (MRF), Chiang Rai, Thailand for the support of her study. Kevin D. Hyde thanks the Chinese Academy of Sciences, project number 2013T2S0030, for the award of Visiting Professorship for Senior International Scientists at Kunming Institute of Botany and Mae Fah Luang University for a grant "Biodiversity, phylogeny and role of fungal endophytes of *Pandanaceae*" (Grant number: 582010200112) for supporting this study. Samantha C. Karunarathna, Kasun M. Thambugala and Jingzu Sun are thanked for their help in sequencing and for valuable suggestions.

References

Cai, L., Jeewon, R. & Hyde, K.D. (2006) Phylogenetic investigations of *Sordariaceae* based on multiple gene sequences and morphology. *Mycological Research* 110: 137–150.

http://dx.doi:10.1016/j.mycres.2005.09.014

- Castlebury, L.A., Rossman, A.Y., Sung, G.H., Hyten, A.S. & Spatafora, J.W. (2004) Multigene phylogeny reveals new lineage for *Stachybotrys chartarum*, the indoor air fungus. *Mycological Research* 108 (8): 864–872. http://dx.doi:10.1017/S0953756204000607
- Chomnunti, P., Hongsanan, S., Hudson, B.A., Tian, Q., Perŝoh, D., Dhami, M.K., Alias, A.S., Xu, J., Liu, X., Stadler, M. & Hyde, K.D. (2014) The sooty moulds. *Fungal Diversity* 66: 1–36. http://dx.doi.org/10.1007/s13225-014-0278-5
- Crous, P.W., Wingfield, M.J., Guarro, J., Cheewangkoon, R., van der Bank, M., Swart, W.J., Stchigel, A.M., Cano-Lira, J.F., Roux, J., Madrid, H., Damm, U., Wood, A.R., Shuttleworth, L.A., Hodges, C.S., Munster, M., de Jesús Yáñez-Morales, M., Zúñiga-Estrada, L., Cruywagen, E.M., De Hoog, G.S., Silvera, C., Najafzadeh, J., Davison, E.M., Davison, P.J.N., Barrett, M.D., Barrett, R.L., Manamgoda, D.S., Minnis, A.M., Kleczewski, N.M., Flory, S.L., Castlebury, L.A., Clay, K., Hyde, K.D., Maússe-Sitoe, S.N.D., Chen, Shuaifei, Lechat, C., Hairaud, M., Lesage-Meessen, L., Pawłowska, J., Wilk, M., Śliwińska-Wyrzychowska, A., Mętrak, M., Wrzosek, M., Pavlic-Zupanc, D., Maleme, H.M., Slippers, B., Mac Cormack, W.P., Archuby, D.I., Grünwald, N.J., Tellería, M.T., Dueñas, M., Martín, M.P., Marincowitz, S., de Beer, Z.W., Perez, C.A., Gené, J., Marin-Felix, Y. & Groenewald, J.Z. (2013) Fungal Planet description sheets: 154–213. *Persoonia* 31: 188–296.

Corda, A. (1837) Icones fungorum hucusque cognitorum, 1. J.G. Calve, Prague, without pagination.

- Daranagama, D.A., Camporesi, E., Tian, Q., Liu, X., Chamyuang, S., Stadler, M., & Hyde, K.D. (2015) Anthostomella is polyphyletic comprising several genera in Xylariaceae. Fungal Diversity 73: 203–238. http://dx.doi.org/10.1007/s13225-015-0329-6
- De Notaris, G. (1844) Cenni sulla tribù dei Pirenomiceti sferiacei e descrizione di alcuni generi spettanti alla medesima. *Giornale Botanico Italiano* 1: 322–355.
- Hall, T. (2004) Bioedit version 6.0.7. Available from:http://www.mbio.-ncsu.edu/bioedit/bioedit/bioedit.html (accessed 1 June 2016)
- Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
- Jayasiri, S.C., Hyde, K.D., Ariyawansa, H.A., Bhat, J., Buyck, B., Cai, L., Dai, Y.C., Abd-Elsalam, K.A., Ertz, D., Hidayat, I., Jeewon, R., Jones, E.B.G., Bahkali, A.H., Karunarathna, S.C., Liu, J.K., Luangsa-ard, J.J., Lumbsch, H.T., Maharachchikumbura, S.S.N., McKenzie, E.H.C., Moncalvo, J.M., Ghobad-Nejhad, M., Nilsson, H., Pang, K.L., Pereira, O.L., Phillips, A.J.L., Raspé, O., Rollins, A.W., Romero, A.I, Etayo, J., Selçuk, F., Stephenson, S.L., Suetrong, S., Taylor, J.E., Tsui, C.K.M., Vizzini, A., Abdel-Wahab, M.A., Wen, T.C., Boonmee, S., Dai, D.Q., Daranagama, D.A., Dissanayake, A.J., Ekanayaka, A.H., Fryar, S.C., Hongsanan, S., Jayawardena, R.S., Li, W.J., Perera, R.H., Phookamsak, R., de Silva, N.I., Thambugala, K.M., Tian, Q., Wijayawardene, N.N., Zhao, R.L., Zhao, Q., Kang, J.C. & Promputtha, I. (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. *Fungal Diversity* 74: 3–18. http://dx.doi:10.1007/s13225-015-0351-8
- Liu LK Phockameak P. Doilom M. Wiki S. Mei L.V.
- Liu, J.K., Phookamsak, R., Doilom, M., Wiki, S., Mei, L.Y., Ariyawansa, H.A., Boonmee, S., Chomnunti, P., Dai, D.Q., Bhat, D.J., Romero, A.I., Xhuang, W.Y., Monkai, J., Jones, E.B.G., Chukeatirote, E., Ko-Ko, T.W., Zhoa, Y.C., Wang, Y. & Hyde, K.D. (2012) Towards a natural classification of Botryosphaeriales. *Fungal Diversity* 57: 149–210. http://dx.doi.org/10.1007/s13225-012-0207-4
- Liu, Y.J., Whelen, S. & Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. *Molecular Biology and Evolution* 16 (12): 1799–1808.
- Maharachchikumbura, S.S.N., Hyde, K.D., Jones, E.B.G., McKenzie, E.H.C., Huang, S.K., Abdel-Wahab, M.A., Daranagama, D.A., Dayarathne, M., D'souz, M.J., Goonasekara, I.D., Hongsanan, S., Jayawardena, R.S., Kirk, P.M., Konta, S., Liu, J.K., Liu, Z.Y., Norphanphoun, C., Pang, K.L., Perera, R.H., Senanayake, I.C., Shang, Q., Shenoy, B.D., Xiao, Y., Bahkali, A.H., Kang, J., Somrothipol, S., Suetrong, S., Wen, T. & Xu, J. (2015) Towards a natural classification and backbone tree for Sordariomycetes. *Fungal Diversity* 72: 199–301.

http://dx.doi.10.1007/s13225-015-0331-z

- Mel'nik, V., Lee, S., Groenewald, J.E. & Crous, P.W. (2004) New hyphomycetes from Restionaceae in fynbos: *Parasarcopodium ceratocaryi* gen. et sp. nov., and *Rhexodenticula elegiae* sp. nov. *Mycological Research* 3 (1): 19–28.
- Nylander, J.A.A. (2004) MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Page, R.D.M. (1996) Tree View: an application to display phylogenetic trees on personal computers. *Computer Applications in the Biosciences* 12: 357–358.

- Phookamsak, R., Norphanphoun, C., Tanaka, K., Dai, D.Q., Luo, Z.L., Liu, J.K., Su, H.Y., Bhat, D.J., Bahkali, A.H., Mortimer, P.E., Xu, J.C. & Hyde, K.D. (2015) Towards a natural classification of *Astrosphaeriella*-like species, introducing Astrosphaeriellaceae and Pseudoastrosphaeriellaceae fam. nov. and *Astrosphaeriellopsis*, gen.nov. *Fungal Diversity* 74: 143–197. http://dx.doi:10.1007/s13225-015-0352-7
- Põldmaa, K. (2011) Tropical species of *Cladobotryum* and *Hypomyces* producing red pigments. *Studies in Mycology* 68: 1–34. http://dx.doi:10.3114/sim.2011.68.01
- Rannala, B. & Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. *Journal of Molecular Evolution* 43: 304–311.
- Silvestro, D. & Michalak, I. (2010) raxmlGUI: a graphical front-end for RAxML Program and documentation available from: http://www. sourceforge.com (accessed 22 October 2015)
- Silvestro, D. & Michalak, I. (2012) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12: 335-337.
- Summerbell, R.C., Gueidan, C., Schroers, H.J., De Hoog, G.S., Starink, M., Rosete, Y.A., Guarro, J. &. Scott, J.A. (2011) Acremonium phylogenetic overview and revision of *Gliomastix*, *Trichothecium* and *Sarocladium*. *Studies in Mycology* 68: 139–162.
- Thambugala, K.M., Hyde, K.D., Tanaka, K., Tian, Q., Wanasinghe, D.N., Ariyawansa, H.A., Jayasiri, S.C., Boonmee, S., Camporesi, E., Hashimoto, A., Hirayama, K., Schumacher, R.K., Promputtha, I. & Liu, Z.Y. (2015) Towards a natural classification and backbone tree for Lophiostomataceae, Floricolaceae, and Amorosiaceae fam. nov. *Fungal Diversity* 74: 199–266. http://dx.doi:10.1007/s13225-015-0348-3
- Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172: 4238–4246.
- Wang, Y., Hyde, K.D., McKenzie, E.H.C., Jiang, Y.L., Li, D.W. & Zhao, D.G. (2015) Overview of *Stachybotrys (Memnoniella)* and current species status. *Fungal Diversity* 71: 17–83. http://dx.doi:10.1007/s13225-014-0319-0
- White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In:* Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) *PCR protocols: a guide to methods and applications*. Academic Press, San Diego, California, USA, pp. 315–322. http://dx.doi:10.1016/B978-0-12-372180-8.50042-1
- Zhaxybayeva, O. & Gogarten, J.P. (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. *Genomics* 3: 1–15.