Impatiens tianlinensis (Balsaminaceae), a new species from Guangxi, China

LEI ZENG1,2, YAN-NAN LIU2, RAJIB GOGOI3, LIN-JING ZHANG1,* & SHENG-XIANG YU2,*

1College of Life Sciences, Shanxi Normal University, Linfen 041004, China
2State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
3Botanical Survey of India, Arunachal Pradesh Regional Centre, Senki View, Pin-791 111 Itanagar, India.
*Correspondence: yushengxiang@ibcas.ac.cn; linjingzh@aliyun.com

Abstract

Impatiens tianlinensis S. X. Yu & L. J. Zhang, a new species of the Balsaminaceae from Cenwang Laoshan Mountain, Tianlin County, Guangxi Region, is described and illustrated. This species closely resembles *I. apalophylla* and *I. clavigera* var. *auriculata* in having racemose inflorescences, 4 lateral sepals, hammer-shaped capsules and ellipsoid seeds, but differs in having sessile glanduliferous petioles, few-flowered inflorescences, incurved spur, yellow lower sepal without reddish patches, yellowish petals and lower sepal, and acuminate dorsal petal apex. The molecular data, from nuclear ribosomal and plastid genes, as well as pollen characters also support that the species is new to science.

Key words: Balsaminaceae, molecular data, new species, phylogeny, pollen character

Introduction

The family Balsaminaceae contains two genera currently recognized, the small *Hydrocera* Wight & Arnott (1834: 140) and *Impatiens* Linnaeus (1753: 937) with over 1000 species (Grey-Wilson 1980, Fischer 2004). *Impatiens* is distributed throughout tropical Africa, India, South-west Asia, South China and Japan, with a few species spreading into the north temperate zone of Europe, Russia, China and North America (Grey-Wilson 1980).

There are about 270 species known in China (Chen 2001, Chen et al. 2007, Yu 2012), and their majority are restricted to southwest China: Yunnan, Sichuan, Guizhou, Xizang (Tibet) and Guangxi. As in many other genera, several new species are discovered within these regions each year, such as *Begonia* of Begoniaceae (Ku et al. 2008, Peng et al. 2012, 2013), *Lagarosolen* of Geserinaceae (Xu et al. 2008), *Pararuellia* of Acanthaceae (Chen et al. 2009), *Aspidistra* of Asparagaceae (Lin et al. 2013) and *Codonopsis* of Campanulaceae (Wang & Hong, 2014).

During a taxonomic revision of *Impatiens* in Guangxi Region, the first author encountered several specimens of a species thought to be new to science. Further studies confirmed that it can be readily distinguished from related taxa, based on morphological (including palynological) and molecular characters.

Materials and Methods

Molecular methods—In total, 152 species of *Impatiens* were sampled to represent different evolutionary patterns of the genus. Three species: *Hydrocera triflora* (L.) Wight & Arnott (1834: 140) (Balsaminaceae), and *Marcgravia umbellata* Linnaeus (1753: 503) (Marcgraviaceae) and *Norantea guianensis* Aublet (1775: 554) (Marcgraviaceae) were included as outgroups based on the results of Yuan et al. (2004), Janssen et al. (2006) and Yu et al. (2015). All sequences were downloaded from GenBank except *I. clavigera* Hook. f. (1908: 2863) var. *auriculata* Huang S.H. (2003: 277) and *I. tianlinensis*, which were newly generated for this study with accession numbers KT321312 for ITS, KT321311 for *atpB-rbcL* and KT321313 for *trnL*-F, respectively. Vouchers and GenBank accession numbers are listed in Table S1.

Three molecular markers were used: ITS (ITS-1, 5.8S, and ITS-2), *atpB-rbcL* and *trnL*-F region (*trnL* intron, and
trnL [UAA] 3’ exon-**trnF** [GAA] intergenic spacer. Total genomic DNA was extracted from silica gel-dried leaves with a modified CTAB protocol (Doyle & Doyle, 1987). Primers and PCR protocols for ITS, **atpB-rbcL** and **trnL-F** are taken from White et al. (1990), Janssens et al. (2006) and Taberlet et al. (1991) respectively. PCR products were purified using a GFX™PCR DNA and Gel Band Purification Kit (Amersham Pharmacia Biotech, Piscataway, NJ, USA). Sequencing reactions were carried out using an ABI Prism Bigdye Terminator Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA). Products were analyzed on an ABI3730x1 automated DNA sequencer.

Sequences were aligned using the default parameters in Clustal X v.1.83 (Thompson et al., 1997) and then adjusted manually in BioEdit v.7.0 (Hall, 1999). Four difficult-to-align regions in **trnL-F** (encompassing 73 sites) and one difficult-to-align region in **atpB-rbcL** (encompassing 42 sites) were excluded from the analyses.

Maximum parsimony (MP) and Bayesian inference (BI) were used to analyze the ITS and plastid datasets. The MP analyses were carried out in PAUP* v.4.0b10 (Swofford, 2003). Heuristic searches were conducted with 1000 replicates with random sequence addition, in which one tree was held at each step during stepwise addition, tree-bisection-reconnection (TBR) branch swapping, MulTrees in effect, and steepest descent off. Bootstrapping was conducted with 1000 replicates with 10 random taxon additions and heuristic search options. The BI analyses were carried out in MrBayes v.3.0b4 (Ronquist & Huelsenbeck, 2003). Each of the three regions (ITS, **atpB-rbcL**, and **trnL-F**) was assigned its own model of nucleotide substitution determined by the Akaike information criterion (AIC) in Modeltest v.3.06 (Posada & Crandall, 1998).

Morphological methods:—Measurements of leaves, inflorescences, flowers and seeds were made on both dried herbarium specimens (GXMI, IBCS, IKB, and PE) and live plants in the field. Pollen samples for scanning electron microscope (SEM; Hitachi S-4800) study, were attached to specimen stubs with a conductive adhesive and sputter-coated with gold-palladium. Pollen characters were evaluated according to the literature (e.g., Lu, 1991; Lu & Chen, 1991; Chen, 2001; Song et al., 2005; Janssens et al., 2012). Pollen grains were treated with the methods described by Erdtman (1971) and Moore and Webb (1978).

Taxonomy

Impatiens tianlinensis S. X. Yu & L. J. Zhang, sp. nov. (Figs. 1–2)

This species is similar to *I. apalophylla* Hook. f. (1908: 243) and *I. clavigera* var. *auriculata* in having racemose inflorescences, 4 lateral sepals, hammer-shaped capsules and ellipsoid seeds, but differs in sessile glanduliferous petioles, few-flowered inflorescences, incurved spur, yellow lower sepal without reddish patches, yellowish petals and lower sepal, and acuminate dorsal petal apex.

Type:—CHINA. Guangxi: Tianlin county, Cenwang Laoshan Mountain, in a valley near the river, 24°24’04.7” N, 106°23’09.5” E, ca. 1260 m, 9 Oct 2007, S. X. Yu 3731 (holotype PE!, isotype IBK!).

Herb, perennial, 50–80 cm tall, glabrous. Stems fleshy, erect, simple, robust; inferior nodes swollen. Leaves alternate, towards the stem apex aggregated; blade deep green above, pale green beneath, ovate to oblanceolate, 10–15 (~18) cm long, 5–8 cm wide, apex acuminate, base cuneate, margin crenate, with fimbriae between the teeth; lateral veins 7–9 pairs. Petioles (0.5–1–2 cm (or upper leaves subsessile) with several short clavate glands. Inflorescence racemose; racemes solitary in the upper axils, 10–15 cm, 3–5 (~7) flowered, bracteate. Pedicels thin, 15–20 mm. Bracts ovate, 3–5 mm, acute, deciduous. Flowers yellowish or cream. Lateral sepals 4, the outer 2 small, ovate, symmetric, 5-veined, yellowish-green, 5–8 × 3–5 mm; the inner 2 large, 7–8 × 2–3 mm, sickle-shaped, inaequilateral, apex acuminate or caudate. Lower sepal 2.5–3.5 cm excluding spur, saccate, abruptly constricted into a 1–1.5 cm involute spur. Dorsal petal 10–12 × 7–9 mm, ovate, apex obtuse, base broadly cuneate, midrib obvious, with a slight dorsal crest. Lateral united petals yellow, 2–2.5 cm; lower lobe 10–15 mm, oblong; upper lobe 20–25 mm, elliptic, apex emarginate, middle of inner margin without appendage. Stamens 5, filaments linear, 2–3 mm, anthers obtuse. Ovary clavate, superior part inflated. Capsule hammer-shaped, 1.5–2 cm, seed ellipsoid.

Palynology:—Pollen grains of *Impatiens tianlinensis*, *I. apalophylla* and *I. claviger* var. *auriculata* are all triangular in polar view, tricolpate with long, thin colpi, an exine with reticulate ornamentation and dense granules in lumina (Fig. 3A–C). Pollen grains of *I. tianlinensis* are 30.13 (29.62–30.47) × 12.95 (12.68–13.54) μm, whereas those of *I. apalophylla* are very much narrower, ca. 31.85 (30.96–32.73) × 5.57 (5.13–6.75) μm. Pollen grains of *I. claviger* var. *auriculata* are 27.09 (26.58–28.63) × 12.78 (12.34–13.69) μm.
FIGURE 1. Impatiens tianlinensis: A. habit; B. partial view of petiole; C. flower (lateral view); D. flower (front view); E. bractlet; F. outer lateral sepal; G. inner lateral sepal; H. lower sepal (lateral view); I. dorsal petal; J. lateral united petals; K. capsule; L. transection of ovary (Drawn by Y. B. Sun from S. X. Yu 3731).

Phenology:—Flowering and fruiting from September to November.

Ecology:—This new species grows in a valley at an elevation of 1100–1300 m. s. m., in a disturbed forest. The population is apparently small.

Distribution:—Except the type locality, *I. tianlinensis* is also known from Lingyun, Fengshan, Leye and Nandan of Guangxi.

Etymology:—The specific epithet ‘tianlinensis’ refers to the type locality.

Additional examined materials:—China. Guangxi: Lingyun, Lingyun Expedition 3-6098 (GXMI); Fengshan, Fengshan Expedition 4-7-76 (GXMI); Leye, Leye Expedition 3-30133a (GXMI); Nandan, Nandan Expedition 4-5-113, 4-5-300, 4-5-472, 4-5-750 (GXMI).

Discussion

Our ITS and *atpB-rbcL* trees are congruent with those of previous studies (Yu et al. 2015). Two major subdivisions of *Impatiens* are recognized, with seven subclades (Figs. 4–5; S1–S2). Both ITS and *atpB-rbcL* indicate that *I. tianlinensis* is a member of subgenus *Clavicarpa* S.X. Yu & Wei Wang (2015: 13) (Figs. 4–5). In the ITS tree *I. tianlinensis* and *I. clavigera var. auriculata* form a clade (PP 1.00 and BS 66%), which is sister to *I. chishuiensis* Y. X. Xiong (1996: 98)
In the \textit{atpB-rbcL} tree, \textit{I. tianlinensis}, \textit{I. clavigera} var. \textit{auriculat}, \textit{I. chishuiensis} and some other species form a large polytomy with moderate support (PP 0.91 and BS 99%), which is congruent with the ITS-tree. Also most morphological characters, such as perennial habit, racemose inflorescence, 4 lateral sepals, 4-carpellate ovary with one ovule per carpel, and 3-colpate pollen indicate that \textit{I. tianlinensis} belong in subg. \textit{Clavicarpa}.

\textbf{FIGURE 4.} Bayesian consensus phylogram based on the branch length of the ITS data. Numbers above and below branches are Bayesian posterior probabilities (> 0.5) and bootstrap percentages (> 50%), respectively. Hyphen (“-”) indicates node not supported.

\textit{I. tianlinensis} is distinguished from its allies by the few-flowered raceme, the glanduliferous petiole and the involute spur. Pollen studies show that \textit{I. tianlinensis} has obvious differences from the related species. The distinctions are the size, the murus morphology of the reticulate ornamentation and the lumina. The pollen grains of \textit{I. tianlinensis} are slightly longer than those of \textit{I. clavigera} var. \textit{auriculata} in equatorial view. The muri of the reticulate ornamentation are much narrower in \textit{I. tianlinensis}. The granules in lumina are evenly distributed in \textit{I. tianlinensis} but restricted to the muri in \textit{I. clavigera} var. \textit{auriculata}. The nuclear ribosomal and plastid genes as well as morphology (including pollen characters) support the distinction of this new species.

\textbf{Acknowledgements}

The authors wish to express heartfelt thanks to the keepers of the herbaria of Paris (P) and Royal Botanic Garden, Kew (K) for loan of type specimens, and Ying-bao Sun for making the drawing. We are also grateful to Professor Magnus Lidén for polishing the language, and Eberhard Fischer for his critical review and comments. This work was supported by National Natural Science Foundation of China (3170177) and Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (grant no. KSCX2-EW-Z-1).
FIGURE 5. Bayesian consensus phylogram based on the branch length of the cpDNA data (atpB-rbcL + trn L-F). Numbers above and below branches are Bayesian posterior probabilities (> 0.5) and bootstrap percentages (> 50%), respectively.

References

http://dx.doi.org/10.1007/978-3-662-07257-8_4
http://dx.doi.org/10.1660/036364406775971796
Ku, S.M., Kono, Y.S. & Liu, Y. (2008) Begonia pengii (sect. Coelocentrum, Begoniaceae), a new species from limestone areas in Guangxi,