

http://dx.doi.org/10.11646/phytotaxa.205.2.2

Multigene phylogeny and morphology reveal *Phaeobotryon rhois* sp. nov. (Botryosphaeriales, Ascomycota)

XINLEI FAN¹, KEVIN D. HYDE^{3,4}, JIANKUI LIU⁴, YINGMEI LIANG² & CHENGMING TIAN^{1*}

¹ The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China ² Museum of Beijing Forestry University, Beijing 100083, China

³ International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, China

⁴ School of Science, Mae Fah Luang University, Chaing Rai 57100, Thailand

* Correspondence author: chengmt@bjfu.edu.cn

Abstract

The family *Botryosphaeriaceae* encompasses important plant-associated pathogens, endophytes and saprobes with a wide geographical and host distribution. Two dark-spored botryosphaeriaceous taxa associated with *Rhus typhina* dieback and canker disease were collected from Ningxia Province, in northwestern China. Morphology and multigene analysis (ITS, LSU and EF-1α) clearly distinguished this clade as a distinct species in the genus. *Phaeobotryon rhois* is introduced and illustrated as a new species in this paper. The species is characterized by its globose, unilocular fruiting bodies and small, brown, 1-septate conidia. It can be distinguished from the similar species *P. cercidis*, *P. cupressi*, *P. mamane* and *P. quercicola* based on host association and conidial size and colour.

Key words: biodiversity, Botryosphaeriaceae, molecular phylogeny, new species, taxonomy

Introduction

Phaeobotryon (Botryosphaeriaceae) was established by Theissen & Sydow (1915) to accommodate *Dothidea cercidis* Cooke and subsequently entered a long period of confusion with a broad concept of the *Botryosphaeria* species. Phillips *et al.* (2008) redefined *Phaeobotryon* using the characteristic of 2-septate, brown ascospores, with bipolar conical apiculi. *Phaeobotryon* is a monophyletic genus with a single name for both sexual and asexual morphs (Phillips *et al.* 2008, Liu *et al.* 2012). Seven *Phaeobotryon* epithets are listed in Index Fungorum (2015) while Kirk *et al.* (2008) estimated there are four species. Sequence data or living cultures, are however, available for only a very few species and many taxa need verification. Recent studies suggest that this genus comprises four species (*P. cercidis* Cooke, *P. cupressi* Abdollahzadeh *et al.*, *P. mamane* Crous & Phillips and *P. quercicola* (Phillips) Crous & Phillips), of which only two species (*P. cupressi* and *P. mamane*) have been verified and studied based on available living cultures (Phillips *et al.* 2005, 2008, 2013; Abdollahzadeh *et al.* 2009). Until now, *Phaeobotryon* has been recorded from *Cercis canadensis* L., *Cupressus sempervirens* L., *Juniperus scopulorum* Sargent, *Quercus* sp. and *Sophora chrysophylla* (Salisb.) Seem. only in Germany, Iran and the USA (Abdollahzadeh *et al.* 2009, Phillips *et al.* 2013). Although *Phaeobotryon* species have been isolated from diseased plants, their pathogenicity has not been tested and their role as causal agents of disease is unresolved.

During an investigation of forest pathogens that cause canker or dieback disease in China, two *Phaeobotryon* specimens were collected from *Rhus typhina* L. in Yinchuan City, Ningxia Province, China. This species is characterized by globose, unilocular, fruiting bodies and brown, $22 \times 11 \mu m$, ellipsoid to oblong, 1-septate conidia. Phylogenetic analysis inferred from combined ITS, LSU and EF-1 α sequence data provided strong support that this is a new species. We introduce *Phaeobotryon rhois* sp. nov. in this paper with a description and illustrations and compare it with other species in the genus.

Material and methods

Isolation

Two isolates were obtained by single spore isolation following the methods of Chomnunti *et al.* (2014). After incubation at 25 °C for 24 h, single germinating conidia were transferred to fresh plates of PDA. The representative isolates are maintained in the China Forestry Culture Collection Center (CFCC), and duplicate isolates of the new species cultures are deposited in the China Center for Type Culture Collection (CCTCC). Specimens are deposited in the Museum of Beijing Forestry University (BJFC).

Morphology

The conidiomata and conidia characters, including size, shape, colour, septation, wall thickness and texture were recorded from specimens on infected plant tissues. Vertical and horizontal sections were cut through the conidiomata by hand using a razor blade. Over 20 conidiomata were sectioned, and 50 conidia were randomly selected for measurement using a Leica light microscope (LM, DM 2500). Isolates cultured on PDA were incubated in the dark at 25 °C and culture characteristics (i.e., colony colour, texture and arrangement of the conidiomata) were recorded at 3, 7 and 30 days.

DNA extraction, PCR amplification and sequencing

Genomic DNA was obtained from colonies grown on PDA with cellophane using a modified CTAB method (Doyle and Doyle 1990). DNA concentrations were estimated by electrophoresis in 1.2 % agarose gels, qualities were measured with a NanoDropTM 2000 (Thermo, USA) according to the user's manual (Desjardins *et al.* 2009), and DNA was stored at -80°C. The PCR amplifications were performed in a DNA Engine (PTC-200) Peltier Thermal Cycler (Biorad Laboratories, CA, USA). ITS, LSU and EF-1 α sequence data were generated in this study. The ITS region was amplified using ITS1 and ITS4 primers (White *et al.* 1990). The LSU region was amplified using NL1 and NL4 primers (O'Donnell 1993). The EF-1 α region was amplified using EF1-688F and EF1-1251R primers (Alves *et al.* 2008). The PCR amplification products were visually estimated by electrophoresis in 2 % agarose gels. DNA sequencing was performed using an ABI PRISM® 3730XL DNA Analyzer with the BigDye® Terminater Kit v.3.1 (Invitrogen), and all primers were synthesized by Invitrogen Biotech Co. Limited (Beijing, China).

DNA sequence analysis

The DNA sequences generated by the forward and reverse primers were used to obtain consensus sequences using Seqman v.7.1.0 (DNASTAR Inc, Madison, USA). Subsequently, the sequences that included reference sequences from GenBank were aligned using MAFFT v.6 (Katoh & Toh 2010), and the alignments were then edited manually using MEGA v.6 (Tamura *et al.* 2013). A partition homogeneity test (PHT) test with heuristic search and 1,000 homogeneity was performed using PAUP v.4.0b10 to test the discrepancy among the ITS-LSU and EF-1 α in reconstructing phylogenetic trees. Phylogenetic analysis was performed with PAUP v.4.0b10 for maximum parsimony (MP) analysis (Swofford *et al.* 2003), MrBayes v.3.1.2 for Bayesian inference (BI) analysis (Ronquist & Huelsenbeck 2003) and PhyML v.3.1 for maximum likelihood (ML) analysis (Guindon *et al.* 2010). The analysis was performed on the multilocus alignments (ITS, LSU, and EF-1 α). *Melanops* spp. (*Melanopsaceae*) and *Saccharata* sp. (*Saccharataceae*) belonging to the order Botryosphaeriales were selected as outgroups (Phillips *et al.* 2013). The illustrated trees were drawn with Figtree v.1.3.1 (Rambaut & Drummond 2010).

MP analysis was run using the heuristic search option of 1000 random-addition sequences and tree bisection and reconnection (TBR) as the branch-swapping algorithm. All detected insertion-deletion events (Indels) were coded using the simple code method in the GapCoder software (Young & Healy 2003). The branches of zero length were collapsed, and all parsimonious trees were saved. Clade stability was assessed using a bootstrap analysis of 1000 replicates (Hillis & Bull 1993). Other parsimony scores that were calculated included the length (TL), consistency index (CI), retention index (RI) and rescaled consistency (RC). The ML analysis was also performed using PhyML v.3.1 using a GTR model of site substitution that included estimation of the gamma-distributed rate heterogeneity and a proportion of invariant sites (Guindon *et al.* 2010). The branch support was evaluated with a bootstrapping method of

100 replicates (Hillis & Bull 1993). The Bayesian analysis was performed with a Markov Chain Monte Carlo (MCMC) algorithm with Bayesian posterior probabilities (Rannala & Yang 1996). The model of nucleotide substitutions was estimated with MrModeltest v.2.3 (Posada and Crandall 1998), and a weighted Bayesian analysis was considered. Two MCMC chains were run from random trees for 10⁶ generations, and the trees were sampled every 100th generation, which resulted in 10⁴ total trees. The first 25 % of the trees were discarded as the burn-in phase of each analysis, and the posterior probabilities were calculated using the remaining 7500 trees.

All sequence data from this study have been deposited in GenBank, the multi-gene sequence alignment files have been deposited in TreeBASE (www.treebase.org) under accession number S16768, and the taxonomic novelty has been deposited in MycoBank (Crous *et al.* 2004) and Faces of Fungi (www.facesoffungi.org).

Results

The combined ITS, LSU and EF-1 α region dataset from 63 ingroup taxa representing 47 clades residing in primary 17 genera of *Botryosphaeriaceae* is listed in Table 1. A partition homogeneity test (PHT) was not significant (P = 0.012 > 0.01) indicating that the individual datasets were congruent and produced trees with the same topologies. Following alignment, the combined dataset had a length of 1502 characters, including the coded alignment gaps. Of these characters, 939 were constant, and 102 were variable and parsimony-uninformative. MP analysis of the remaining 461 parsimony-informative characters resulted in six equally parsimonious trees of 1884 lengths (CI = 0.503, RI = 0.807, RC = 0.406); the generated phylogram is shown in Fig. 1. The ML analysis was run using the general time reversible (GTR) model of DNA evolution, which applies a discrete gamma distribution with six rate categories (GTR+ Γ +G), and resulted in an MP tree with the same topology as the presented tree. The BI analysis resulted in the same topology with an average standard deviation of split frequencies = 0.009984. The MP bootstrap support (BT) and ML were equal to or above 70 % and 75 %. The branches with significant Bayesian posterior probabilities (BPP) equal to or above 0.95 are thickened in the phylogram.

The two isolates of *Phaeobotryon rhois* from *Rhus typhina* clustered in the subclade of *Phaeobotryon* and are distinct from *P. mamane* and *P. cupressi*. The two strains clustered in an individual clade representing a novel species with high support values (100 for BT and 1.00 for BPP); this is also supported by morphology.

Species	Isolate No.	Ger	GenBank Accession No.		
		ITS	LSU	EF-1a	
Barriopsis fusca	CBS 174.26*	EU673330	DQ377857	EU673296	
Barriopsis iraniana	IRAN 1448	FJ919663	N/A	FJ919652	
Botryobambusa fusicoccum	CBS 134113*	JX646792	JX646809	JX646857	
Botryobambusa fusicoccum	MFLUCC 110657	JX646793	JX646810	JX646858	
Botryosphaeria corticis	CBS 119047	DQ299245	EU673244	EU017539	
Botryosphaeria dothidea	CBS 115476*	AY236949	AY928047	AY236898	
Botryosphaeria fabicercianum	CMW 27106	HQ332199	N/A	HQ332215	
Cophinforma atrovirens	MFLUCC 110425*	JX646800	JX646817	JX646865	
Cophinforma atrovirens	MFLUCC 110655	JX646801	JX646818	JX646866	
Cophinforma eucalypti	CBS 124935	FJ888476	N/A	FJ888457	
Cophinforma mamane	CBS 117444	CBS 117444 KF531822 DQ3		KF531801	
Diplodia africana	CBS 120835	EF445343	N/A	EF445382	
Diplodia mutila	CBS 112553*	AY259093	AY928049	AY573219	
Diplodia stevensii	CBS 230.30	DQ458886	EU673265	DQ458869	
Dothiorella iberica	CBS 115041	AY573202	AY928053	AY573222	
Dothiorella sarmentorum	IMI 63581b	AY573212	AY928052	AY573235	
Endomelanconiopsis endophytica	CBS 120397*	EU683656	EU683629	EU683637	
Endomelanconiopsis microspora	CBS 353.97	EU683655	EU683628	EU683636	
Lasiodiplodia crassispora	CBS 110492	EF622086	EU673251	EF622066	

TABLE 1. Isolates used in phylogenetic analysis in this study.

...Continue on the next page

TABLE 1. (Continued)

Species	Isolate No.	GenBank Accession No.			
		ITS	LSU	EF-1α	
Lasiodiplodia crassispora	WAC 12533	DQ103550	N/A	DQ103557	
Lasiodiplodia gonubiensis	CBS 115812	AY639595	DQ377902	DQ103566	
Lasiodiplodia theobromae	CBS 164.96*	AY640255	EU673253	AY640258	
Macrophomina phaseolina	CBS 162.25*	KF531826	DQ377905	KF531803	
Macrophomina phaseolina	CBS 227.33	KF531825	DQ377906	KF531804	
Melanops tulasnei	CBS 116805	FJ824769	FJ824764	KF766423	
Melanops sp.	CBS 118.39	FJ824771	DQ377856	FJ824776	
Neodeightonia palmicola	MFLUCC 100822	HQ199221	HQ199222	N/A	
Neodeightonia palmicola	MFLUCC 100823	HQ199224	HQ199225	N/A	
Neodeightonia phoenicum	CBS 122528	EU673340	EU673261	EU673309	
Neodeightonia phoenicum	CBS 169.34	EU673338	EU673259	EU673307	
Neodeightonia subglobosa	CBS 448.91*	EU673337	DQ377866	EU673306	
Neofusicoccum australe	CMW 6837	AY339262	N/A	AY339270	
Neofusicoccum eucalypticola	CBS 115679	AY615141	N/A	AY615133	
Neofusicoccum grevilleae	CPC 16999	JF951137	JF951157	N/A	
Neofusicoccum luteum	CMW 10309	KF766369	KF766202	KF766424	
Neofusicoccum mangiferae	CMW 7024	AY615185	DQ377920	DQ093221	
Neofusicoccum parvum	ATCC 58191*	AY236943	AY928045	AY236888	
Neoscytalidium dimidiatum	CBS 499.66	KF531820	DQ377925	KF531798	
Neoscytalidium hyalinum	CBS 145.78*	KF531816	DQ377922	KF531795	
Neoscytalidium novaehollandiae	CBS 122071	EF585540	N/A	EF585580	
Phaeobotryon cupressi	IRAN 1445	KF766208	N/A	KF766428	
Phaeobotryon cupressi	IRAN 1454	FJ919673	N/A	FJ919662	
P. cupressi	IRAN 1455	FJ919672	N/A	FJ919661	
P. cupressi	IRAN 1456	FJ919670	N/A	FJ919659	
P. cupressi	IRAN 1458	FJ919671	N/A	FJ919660	
P. mamane	CPC 12440	EU673332	EU673248	EU673298	
P. mamane	CPC 12442	EU673185	EU673333	DQ377899	
P. mamane	CPC 12443	EU673334	EU673249	EU673300	
P rhois	CFCC 89662 ^N	KM030584	KM030591	KM030598	
P. rhois	CFCC 89663 ^N	KM030585	KM030592	KM030599	
Pseudofusicoccum adansoniae	CMW 26147	EF585523	N/A	EF585571	
P. adansoniae	WAC 12689	EF585534	EF585554	EF585567	
P. ardesiacum	CBS 122062	EU144060	N/A	EU144075	
P. kimberleyense	CBS 122058	EU144057	N/A	EU144072	
P. stromaticum	CBS 117448*	AY693974	DQ377931	AY693975	
Saccharata proteae	CBS 115206	KF766226	DQ377882	KF766438	
Spencermartinsia viticola	CBS 117009*	AY905554	DQ377873	AY905559	
S. viticola	UCP 105	JF271748	N/A	JF271784	
Spencermartinsia sp.	ICMP 16827	EU673322	EU673241	EU673289	
Sphaeropsis citrigena	ICMP 16812	EU673328	EU673246	EU673294	
S. citrigena	ICMP 16818	EU673329	EU673247	EU673295	
S. eucalypti	MFLUCC 110579	JX646802	JX646819	JX646867	
S. porosa	CBS 110496	AY343379	DO377894	AY343340	
S. visci	CBS 122526*	EU673324	N/A	EU673292	
Tiarosporella tritici	CBS 118719	KF531830	DQ377941	KF531809	
T. urbis-rosarum	CMW 36477	JQ239407	JQ239420	JQ239394	

The new species the current study are marked with N. Ex-type taxa are in bold. Type species representing the genus are marked with an *.

FIGURE 1. Phylogram of the combined genes of ITS, LSU and EF-1 α based on MP, ML and BI analysis. The values above the branches indicate bootstrap values. The thickened branches indicate PP \geq 0.95 from the Bayesian inferences. *Bars*: 40 nucleotide substitutions. The taxa resulting from the current study are shown in blue. Ex-type taxa are in bold. Type species representing the genus are marked with an *.

Taxonomy

Phaeobotryon rhois C.M. Tian, X.L. Fan & K.D. Hyde, *sp. nov.* MycoBank MB 811599; Facesoffungi number: 00596, Fig. 2

Differs from *Phaeobotryon* spp. by its globose, unilocular fruiting body, size of conidia (22 × 11 µm in average) and host.

FIGURE 2. *Phaeobotryon rhois* (BJFC-S1007, holotype). A, B. Habit of conidiomata on a twig. C. Transverse sections through conidioma. F. Longitudinal section through conidioma. D, E. Conidiogenous cells, immature and mature conidia (arrows pointing to process of conidia maturity). G. Colonies on PDA at 3 days (left) and 30 days (right). Scale bars: A = 1 mm; B = 0.5 mm; $C, F = 40 \text{ }\mu\text{m}$; $D, E = 20 \text{ }\mu\text{m}$.

Etymology:--rhois, referring to the host Rhus typhina L.

Holotype:—BJFC-S1007.

Original description:—pathogen on twigs and branches of *Rhus typhina*. Sexual morph: Undetermined. Asexual morph: *Conidiomatal stromata* immersed in bark, erumpent slightly from surface of the bark, separate or aggregated, globose, dark-brown to black, unilocular, up to 380 μ m diam, wall consisting of 4–6 layers of dark-brown cells *textura angularis*. Ostiole in the center of the disc, inconspicuous, at the same level as the disc surface, surrounded below disc by lighter entostroma, (17.2–)18.9–21.3(–22.8) μ m ($\overline{x} = 19.6 \mu$ m, n = 20) in diam. *Locule* single, globose, (180–)240–360(–380) μ m ($\overline{x} = 330 \mu$ m, n = 20) in diam. *Conidiogenous cells* formed from the cells lining the inner

walls of the locules, hyaline, smooth, inconspicuous. *Conidia* ellipsoid to oblong or subcylindrical or obovoid, smooth to vertuculose, moderately thick-walled, guttulate, ends rounded, initial hyaline, aseptate, becoming brown, 1-septate when mature, $(19-)20-25 \times 10-12 \ \mu m \ (\overline{x} = 22 \times 11 \ \mu m, n = 50)$.

Culture characteristics:—colonies were originally white, and produced dark green to black pigments after 7–10 days. Texture felty with appressed mycelial mat and fluffy aerial mycelium in the centre, edges smooth. Colonies covering the 90 mm diameter Petri-dish after 3 day in the dark at 25 °C.

Material examined:—CHINA. Ningxia Province: Yinchuan City, Yongning County, Wanghong Town, Nongsheng Village, 38°22'97.02" N, 106°21'44.89" E, alt. 1101 m, on twigs and branches of *Rhus typhina (Anacardiaceae)*, 26 July 2013, *Xin-lei Fan & Hong Fan* (BJFC-S1007!, **holotype**), living culture CFCC 89662 = CCTCC AF2014017; Yinchuan City, Yongning County, Wanghong Town, Nongsheng Village, 38°22'98.13" N, 106°21'43.77" E, alt. 1107 m, on twigs and branches of *Rhus typhina (Anacardiaceae)*, 26 July 2013, *Xin-lei Fan & Hong Fan* (BJFC-S1008, paratype), living culture CFCC 89663 = CCTCC AF2014016.

Species	Strain	Conidial size	Conidial colour	Host	Location	Reference
P. cercidis	No strain	No record	No record	Cercis canadensis	USA	Phillips et al. 2008
P. cupressi	IRAN 1455C = CBS	24.1–25 × 12.2	Initially hyaline	Cupressus sempervirens	Iran	Abdollahzadeh et al.
	124700	12.5	and becoming	Juniperus scopulorum	USA	2009
			brown			Alves et al. 2013
						Phillips et al. 2013
P. mamane	CPC 12440 = CBS	$35 - 38 \times 14 - 15$	brown	Sophora chrysophylla	USA	Phillips et al. 2008
	122980					Phillips et al. 2013
P. quercicola	No strain	28.8-30.8 × 15.9-	hyaline	Quercus sp.	Germany	Phillips et al. 2005
		17.1				Phillips et al. 2008
P. rhois	CFCC 89662 =	20.4–24.7 × 10.1–	Initially hyaline	Rhus typhina	China	This study
	CCTCC AF2014017	12.1	and becoming			
			brown			

Table 2. Comparison of species in *Phaeobotryon* (new species in bold).

Discussion

Species of *Botryosphaeriaceae* (Ascomycota) are cosmopolitan in their distribution and occur on a wide range of host plants. The family has been unsettled until Liu *et al.* (2012) listed all of the various primary treatments and redefined 29 genera using multilocus phylogenetic analysis, as well as examinations of the types of genera. However, the interrelations of several genera remained disordered, and Liu *et al.* (2012) noted that it is likely that Botryosphaeriales comprised more families (Crous *et al.* 2006). Subsequently, Slippers *et al.* (2013) introduced three families namely *Aplosporellaceae, Melanopsaceae* and *Saccharataceae* for Botryosphaeriales and this is followed in the outlines of Dothideomycetes in Hyde *et al.* (2013) and Wijayawardene *et al.* (2014). Phillips *et al.* (2013) established a starting point for the resolving genera; these authors considered the accepted genera and species with taxonomic evidence and living cultures, rather than the older taxa, which lacked definitions, unless they had been epitypified. The results cleared up much confusion and resulted in a total of 17 genera that were phylogenetically recognized within *Botryosphaeriaceae*; this classification focused on species with cultures.

Abdollahzadeh et al. (2009) accepted P. cercidis (only sexual morph known), P. cupressi (only asexual morph known), P. mamane and P. quercicola in the genus Phaeobotryon. Phillips et al. (2013) illustrated that P. cupressi and P. mamane known in culture. Molecular data from this study are used in the phylogram in Fig. 1. The current study introduces a novel species, P. rhois, which causes torched tree cankers and is distinguished from other species based on host association, and fruiting body and spore characteristics (Table 2). Phaeobotryon rhois is similar to P. cupressi, however, the conidia of P. rhois are initially hyaline, aseptate and become brown and 1-septate when mature; the sporulation is shown in Fig. 2E. Comparatively, P. cupressi conidia rarely become brown and 1-septate and clearly produce microconidia and microconidiomata (Abdollahzadeh et al. 2009, Phillips et al. 2013). Phaeobotryon rhois was isolated from diseased twigs and branches of Rhus typhina with obvious canker symptoms (Fig. 2A). However,

it has not been determined if this species is pathogenic, as is true of other *Phaeobotryon* species. The taxonomy of species requires a robust sampling from a wide distribution range and consequent pathogenicity testing as in other well-studied botryosphaeriaceous fungi. Future studies should clarify the species diversity in this genus and improve the understanding of its disease importance.

Acknowledgments

This study was financed by the National Natural Science Foundation of China (31170603) and the Fundamental Research Funds for the Central Universities (BLYJ201404). The authors would like to thank Hong Fan (Yinchuan Garden Bureau, Ningxia, China) for the collection of specimens in this study. We are also grateful to Chungen Piao and Minwei Guo (China Forestry Culture Collection Center (CFCC), Chinese Academy of Forestry, Beijing) for support of strains preservation in this study.

References

- Abdollahzadeh, J., Goltapeh, E.M., Javadi, A., Shams-Bakhsh, M., Zare, R. & Phillips, A.J.L. (2009) Barriopsis iraniana and Phaeobotryon cupressi: two new species of the Botryosphaeriaceae from trees in Iran. Persoonia 23: 1–8. http://dx.doi.org/10.3767/003158509X467552
- Alves, A., Crous, P.W., Correia, A. & Phillips, A.J.L. (2008) Morphological and molecular data reveal cryptic speciation in *Lasiodiplodia theobromae*. *Fungal Diversity* 28: 1–13.
- Chomnunti, P., Hongsanan, S., Aguirre-Hudson, B., Tian, Q., Peršoh, D., Dhami, M.K., Alias, A.S., Xu, J., Liu, X., Stadler, M. & Hyde, K.D. (2014) The sooty moulds. *Fungal Diversity* 66: 1–36. http://dx.doi.org/10.1007/s13225-014-0278-5
- Crous, P.W., Gams, W., Stalpers, J.A., Robert, V. & Stegehuis, G. (2004) MycoBank: an online initiative to launch mycology into the 21st century. *Studies in Mycology* 50: 19–22.
- Crous, P.W., Slippers, B., Wingfield, M.J., Rheeder, J., Marasas, W.F., Philips, A.J.L., Alves, A., Burgess, T., Barber, P. & Groenewald, J.Z. (2006) Phylogenetic lineages in the *Botryosphaeriaceae*. *Studies in Mycology* 55: 235–253. http://dx.doi.org/10.3114/sim.55.1.235.
- Desjardins, P., Hansen, J.B. & Allen, M. (2009) Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer. *Journal of Visualized Experiments* 33: 1–3. http://dx.doi.org/10.3791/1610.
- Doyle, J.J. & Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
- Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Systematic Biology* 59: 307–321.
- Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192.

http://dx.doi.org/10.1093/sysbio/42.2.182

- Hyde, K.D., Jones, E.B.G., Liu, J.K., Ariyawansa, H.A., Boehm, E., Boonmee, S., Braun, U., Chomnunti, P., Crous, P.W., Dai, D.Q., Diederich, P., Dissanayake, A., Doilom, M., Doveri, F., Hongsanan, S., Jayawardena, R., Lawrey, J.D., Li, Y.M., Liu, Y.X., Lücking, R., Monkai, J., Muggia, L., Nelsen, M.P., Pang, K.L., Phookamsak, R., Senanayake, I., Shearer, C.A., Suetrong, S., Tanaka, K., Thambugala, K.M., Wijayawardene, N.N., Wikee, S., Wu, H.X., Zhang, Y., Aguirre-Hudson, B., Alias, S.A., Aptroot, A., Bahkali, A.H., Bezerra, J.L., Bhat, D.J., Camporesi, E., Chukeatirote, E., Gueidan, C., Hawksworth, D.L., Hirayama, K., Hoog, S.D., Kang, J.C., Knudsen, K., Li, W.J., Li, X.H., Liu, Z.Y., Mapook, A., McKenzie, E.H.C., Miller, A.N., Mortimer, P.E., Phillips, A.J.L., Raja, H.A., Scheuer, C., Schumm, F., Taylor, J.E., Tian, Q., Tibpromma, S., Wanasinghe, D.N., Wang, Y., Xu, J.C., Yan, J.Y., Yacharoen, S. & Zhang, M. (2013) Families of dothideomycetes. *Fungal Diversity* 63: 1–313. http://dx.doi.org/10.1007/s13225-013-0263-4
- Katoh, K. & Toh, H. (2010) Parallelization of the MAFFT multiple sequence alignment program. *Bioinformatics* 26: 1899–1900. http://dx.doi.org/10.1093/bioinformatics/btq224.
- Kirk, P.M., Cannon, P.F., Minter, D.W. & Stalpers, J.A. (2008) *Ainsworth and Bisby's dictionary of the fungi, 10th edn.* CAB International, Wallingford.

Liu, J.K., Phookamsak, R., Doilom, M., Wikee, S., Li, Y.M., Ariyawansha, H., Boonmee, S., Chomnunti, P., Dai, D.Q., Bhat, J.D., Romero, A.I., Zhuang, W.Y., Monkai, J., Jones, E.B.G., Chukeatirote, E., Ko-Ko, T.W., Zhao, Y.C., Wang, Y. & Hyde, K.D. (2012) Towards a natural classification of *Botryosphaeriales*. *Fungal Diversity* 57: 149–210. http://dx.doi.org/10.1007/s13225-012-0207-4.

O'Donnell, K. (1993) Fusarium and its near relatives. Wallingford, UK.

- Phillips, A.J.L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M.J., Groenewald, J.Z. & Crous, P.W. (2013) The *Botryosphaeriaceae*: genera and species known from culture. *Studies in Mycology* 76: 51–167. http://dx.doi.org/10.3114/sim0021.
- Phillips, A.J.L., Alves, A., Correia, A. & Luque, J. (2005) Two new species of *Botryosphaeria* with brown, 1-septate ascospores and *Dothiorella* anamorphs. *Mycologia* 97: 513–529. http://dx.doi.org/10.3852/mycologia.97.2.513.
- Phillips, A.J.L., Alves, A., Pennycook, S.R., Johnston, P.R., Ramaley, A., Akulov, A. & Crous, P.W. (2008) Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the *Botryosphaeriaceae*. *Persoonia*: 21: 29–55. http://dx.doi.org/10.3767/003158508X340742.
- Posada, D. & Crandall, K.A. (1998) Modeltest: testing the model of DNA substitution. *Bioinformatics* 14: 817–818. http://dx.doi.org/10.1093/bioinformatics/14.9.817.
- Rambaut, A. & Drummond, A. (2010) FigTree v.1.3.1. Institute of evolutionary biology, University of Edinburgh, Edinburgh, UK.
- Rannala, B. & Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. *Journal of Molecular Evolution* 43: 304–311.
- Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572–1574.

http://dx.doi.org/10.1093/bioinformatics/btg180.

- Slippers, B., Boissin, E., Phillips, A.J.L., Groenewald, J.Z., Lombard, L., Wingfield, M.J., Postma, A., Burgess, T. & Crous, P.W. (2013) Phylogenetic lineages in the *Botryosphaeriales*: a systematic and evolutionary framework. *Studies in Mycology* 76: 31–49. http://dx.doi.org/10.3114/sim0020.
- Swofford, D.L. (2003) PAUP*: *Phylogenetic analysis using parsimony,* * *and other methods.* Version 4.0b10. Sinauer Associates, Sunderland.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725–2729.
- White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In:* Innis, M.A., Gelfand, D.H., Snisky, J.J. & White, T.J. (Eds.) *PCR protocols: a guide to methods and applications.* Academic, San Diego, USA.
- Wijayawardene, N.N., Crous, P.W., Kirk, P.M., Hawksworth, D.L., Boonmee, S., Braun, U., Dai, D.-Q., D'souza, M.J., Diederich, P., Dissanayake, A., Doilom, M., Hongsanan, S., Jones, E.B.G., Groenewald, J.Z., Jayawardena, R., Lawrey, J.D., Liu, J.-K., Luecking, R., Madrid, H., Manamgoda, D.S., Muggia, L., Nelsen, M.P., Phookamsak, R., Suetrong, S., Tanaka, K., Thambugala, K.M., Wanasinghe, D.N., Wikee, S., Zhang, Y., Aptroot, A., Ariyawansa, H.A., Bahkali, A.H., Bhat, D.J., Gueidan, C., Chomnunti, P, De Hoog, G.S., Knudsen, K., Li, W.-J., McKenzie, E.H.C., Miller, A.N., Phillips, A.J.L., Piatek, M., Raja, H.A., Shivas, R.S., Slippers, B., Taylor, J.E., Tian, Q., Wang, Y., Woudenberg, J.H.C., Cai, L., Jaklitsch, W.M. & Hyde, K.D. (2014) Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names. *Fungal Diversity* 69: 1–55. http://dx.doi.org/10.1007/s13225-014-0309-2

Young, N.D. & Healy, J. (2003) GapCoder automates the use of indel characters in phylogenetic analysis. Bmc Bioinformatics 4: 6.