Nomenclatural notes in the Pleurothallidinae (Orchidaceae): Stelis

ADAM P. KARREMANS
Lankester Botanical Garden, University of Costa Rica, P.O. Box 302–7050 Cartago, Costa Rica.
Naturalis Biodiversity Center – NHN Universiteit Leiden, The Netherlands; e-mail: adam.karremans@ucr.ac.cr

Abstract

Nomenclatural changes are made in order to place within Stelis a series of species that belong to it in the sense of Genera Orchidacearum, and without previous available names in that genus. New species, names and combinations are proposed, a short discussion for the reasoning is given.

Key words: Crocodeilanthe, Dracontia, Effusiella, Niphantha, Pleurothallis, Stelis, taxonomy

Introduction

Since the publication of the reclassification of subtribe Pleurothallidinae by Pridgeon & Chase (2001), based on Pridgeon et al. (2001), several subsequent studies have placed hundreds of additional pleurothallids in a DNA–based phylogenetic context (Stenzel 2004, Abele 2007, Chiron et al. 2012, Bogarín et al. 2013, Karremans et al. 2013, Karremans 2014). Together those studies suggest that although refinement is necessary in many groups, the generic framework presented by Pridgeon (2005) is maintained in general terms. Many alternative generic concepts proposed later although mostly indicative of species’ relatedness, frequently lack a phylogenetic framework, and although useful are almost impossible to use by themselves (Luer 2004, 2006, 2007). Not having one stable classification system creates confusion among authors and has led to hundreds of species needing transfers from one system to the other in order to be able to use the names comparably.

Some large and highly diverse genera, such as Stelis Swartz (1799: 239), are good candidates for finer splitting. However, for the time being we have no fully comprehensible alternative classification of the genus. On one hand, genera like Crocodeilanthe Reichenbach (1854: 113–114), Dracontia (Luer 1986: 38) Luer (2004: 257) and Salpistele Dressler (1979: 6) form natural groups, that are easy to recognize and are largely monophyletic. On the other hand, genera like Effusiella Luer (2007: 106) and Elongatia Luer (2004: 257) have been amply proven poly- and paraphyletic (Karremans et al. 2013). As species of the above mentioned are interrelated, acceptance of the monophyletic genera would require the recognition of several other generic concepts along the way, which can only be done with a much broader and integral systematic study of the whole clade. Even though better defined and informative generic circumscriptions are preferable, for the time being no other stable and all inclusive systematic proposal for Stelis is available. A broad circumscription of Stelis, albeit harder to define morphologically, is more phylogenetically accurate, and is therefore preferred (Karremans 2014). I am therefore transferring the species that although clearly not belonging to Stelis in a strict sense, are embedded within Stelis in its broad sense (Pridgeon 2005).

Taxonomic Treatment

Stelis brenneri (Luer) Karremans, comb. nov.

Stelis hydra (Karremans & C.M.Sm.) Karremans, comb. nov.
References


Brown, R. (1813)

Dressler, R.L. (1979)

KArreMANS—NOMeNCLATurAL NOTeS IN STELiS

Stelis


http://dx.doi.org/10.2307/3391516

http://dx.doi.org/10.11646/phytotaxa.115.2.1

http://dx.doi.org/10.15517/lank.v13i3.14368

http://dx.doi.org/http://dx.doi.org/10.3100/0.25.016.0206

http://dx.doi.org/10.1600/036364413X666796

http://dx.doi.org/10.10.3100/025.017.0104

http://dx.doi.org/10.3100/0.25.016.0206

KARREMANs—NOMENCLATURAL NOTES IN STELiS

Phytotaxa 203 (2) © 2015 Magnolia Press • 295
http://dx.doi.org/10.3100/025.017.0214


http://dx.doi.org/10.2307/3558390


Swartz, O. (1799) Dianome Epidendri generis Linn. *Journal für die Botanik* 2: 201–244.