

Article https://doi.org/10.11646/jihs.2.4.3

http://zoobank.org/urn:lsid:zoobank.org:pub:6650ADD5-798D-4D43-9C4A-057740A399D3

Corrections to Some Recently Published Papers on Heteroptera (Hemiptera) II

PETR KMENT¹, ATTILIO CARAPEZZA², PÉTER KÓBOR³, ELŐD KONDOROSY⁴, DAVID A. RIDER⁵, MARCOS ROCA-CUSACHS^{6,7}, AND S. SALINI⁸

- ¹Department of Entomology, National Museum of the Czech Republic, Cirkusová 1740, CZ-193 00 Praha 9—Horní Počernice, Czech Republic
- ²University of Palermo; corresponding address: Via Sandro Botticelli, 15, I-90144 Palermo, Italy
- attilio.carapezza@unipa.it; https://orcid.org/0000-0003-3994-1804
- ³ Plant Protection Institute, HUN-REN Centre for Agricultural Research, Institute of Plant Protection, 2 Brunszvik Street, Martonvásár, H-2462 Hungary
- **■** kobor.peter(a)atk.hun-ren.hu, bttps://orcid.org/0000-0003-0266-7303
- ⁴Department of Conservation Biology, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, str. Deák F. 16, Keszthely, H-8360 Hungary
- $\blacksquare \textit{Kondorosy.Elod@uni-mate.hu}, \ \blacksquare \textit{kondorosy.ee@gmail.com}; \ \blacksquare \textit{https://orcid.org/0000-0001-7162-0862}$
- ⁵Department of Entomology, School of Natural Resource Sciences, North Dakota State University, Fargo, North Dakota, USA
- david.rider@ndsu.edu; https://orcid.org/0000-0002-1989-1873
- ⁶Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- ⁷IRBio. Institut de Recerca a la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
- marcosrocacusachs@gmail.com; https://orcid.org/0000-0002-9174-6021
- ICAR-National Bureau of Agricultural Insect Resources, Bangalore, 560024, Karnataka, India
- shalinis.nilavu@gmail.com; https://orcid.org/0000-0003-3557-4365

Abstract

We provide corrections to 19 recent papers (published since 2007) as well as one older paper from 1973. Two new subjective synonyms are proposed: Picromerus orientalis Rishi and Abbasi, 1973, new synonymy = P. griseus (Dallas, 1851) and Piezodorus brevis Hassan, Shree and Kumar, 2025, **new synonymy** = Piezodorus hybneri (Gmelin, 1790). The following species must be excluded from the faunal lists of the particular countries due to obvious misidentifications: Neottiglossa lineolata (Herrich-Schäffer, 1830), Podops inunctus (Fabricius, 1775) and Tarisa pallescens Jakovlev, 1871 (all Pentatomidae) from Greece; Astacops occidentalis Distant, 1903 and Graptostethus nigriceps Stål, 1874 (both Lygaeidae) and Halyomorpha halys (Stål, 1855) (Pentatomidae) from India; Macrovelia hornii (Uhler, 1872) (Macroveliidae), Deraeocoris ruber (Linnaeus, 1758) and Orthotylus caprai Wagner, 1955 (both Miridae) from Iraq; Gminatus australis (Erichson, 1842) (Reduviidae), Arocatus longiceps Stål, 1872 (Lygaeidae), Geocoris punctipes (Say, 1832) (Geocoridae), Hypselonotus punctiventris Stål, 1862 (Coreidae), Neottiglossa undata (Say, 1832) and Piezodorus lituratus (Fabricius, 1794) (both Pentatomidae) from Pakistan. The record of Arhaphe deviatica Brailovsky, 1981 (Largidae) from Saudi Arabia is rejected due to lack of evidence. The records of *Physopelta gutta gutta (Burmeister*, 1834) (Largidae) from Iran and Geocoris amabilis Stål, 1855 from the Canary Islands are problematic and require confirmation. The following new records are provided here: Graptostethus nigriceps from the Solomon Islands, Gyndes pallicornis (Dallas, 1852) from Thailand, and Psacasta neglecta (Herrich-Schäffer, 1837) (Scutelleridae) from Greece. The distribution of Stephanitis oschanini Vasiliev, 1935 and Stephanitis pyri (Fabricius, 1775) (Tingidae) is discussed and their identification characters are illustrated.

Key words: Insecta, Geocoridae, Largidae, Lygaeidae, Macroveliidae, Pentatomidae, Rhyparochromidae, Scutelleridae, Tingidae, corrections, misidentification, new synonym, Canary Islands, Greece, India, Iran, Iraq, Pakistan, Saudi Arabia, Solomon Islands, Thailand

"Errare humanum est, perseverare autem diabolicum. [= To err is human, but to persist in error is diabolical.]"

Introduction

In the mid-2020s, the quality of scientific publications is more at risk than ever before. In addition to unfortunate mistakes or incompetence by individual authors, we are increasingly encountering coordinated scientific fraud activities (for details see Richardson et al. 2025). The growing number of publications with inaccurate or misleading information is forcing reputable authors to spend some of their time publishing corrections (e.g., Burkett-Cadena and Harbach 2025). To live up to the motto quoted above, a year ago we published the first set of 'Corrections' (Kment et al. 2024) concerning the worst cases of heteropterological publications from the last twenty years of which we were aware. We also assumed that the seventeen articles we corrected represented only the tip of the iceberg that is continuing to grow (despite global warming) in various predatory journals that do not bother to adhere to current publishing standards. As confirmation of our concerns, we present here the second part, 'Corrections II,' with critical comments on another twenty papers that contain obvious errors or insufficiently substantiated information that require urgent revision, including two new junior subjective synonyms.

Material and Methods

The structure of the paper follows the first part (Kment et al. 2024): the corrections are presented 'paper after paper.' We consider the references to the corrected papers as negative ones and we have intentionally not included them in the Literature Cited, so as to deprive them of recognition in present scientometric systems.

The material examined is deposited in the following collections:

BMNH The Natural History Museum, London, United Kingdom;

EKKH Personal collection of Előd Kondorosy at MATE Geogikon Campus, Keszthely, Hungary;

HNHM Hungarian Natural History Museum, Budapest, Hungary;

NIM National Insect Museum, Indian Council of Agricultural Research—National Bureau of Agricultural Insect Resources, Bangalore, India (ICAR-NBAIR);

NHMW Naturhistorisches Museum in Wien, Vienna, Austria;

NMPC National Museum of the Czech Republic, Praha, Czech Republic.

The following specimens have been photographed for this paper:

Macroveliidae

Macrovelia hornii (Uhler, 1872): USA, Colorado, Douglas Co., Waterton, 16.xi.1981, 1♀ (brachypterous), J. T. Polhemus lgt. and det. (NMPC) [4.12 mm] (Fig. 1).

Tingidae

Stephanitis oschanini Vasiliev, 1935: N Iran, Shahi, 24.v.1977, $1 \circlearrowleft 1 \updownarrow$, Loc. no. 381, Exped. Nat. Mus. Praha (NMPC) $[\circlearrowleft 2.94 \text{ mm}]$ (Figs. 4–6).

Stephanitis pyri (Fabricius, 1775): Czech Republic, Moravia mer., Brno, Černá Pole, arboretum of Mendel University (6765, 49°12′57″N 16°36′53″), on *Cotoneaster*, 12.x.2017, 1♂ 1♀, H. Šefrová lgt., P. Kment det. (NMPC) [♀ 3.24 mm] (Figs. 7–9).

Lygaeidae

Graptostethus nigriceps Stål, 1874: Solomon Islands, Guadalcanal Island, Honiara (gardens), 19.xi.−13.xii.2013, 1♂, J. Hájek lgt., E. Kondorosy det. (NMPC) [8.33 mm] (Fig. 3). New country record.

Geocoridae

Geocoris nr. aethiops Distant, 1901 (in order of appearance in Figs. 29–32): From cultivated fields, Yemen, Usaifira, mile N of Ta'izz, ca. 4,500 ft., 22. xii. 1937. B. M. Exp. to S. W. Arabia, F. Scott & E. B. Britton, B. M. 1938-246., 1♀, Geocoris aethiops Dist., det. Lv 1971 [= R. Linnavuori] (BMNH); circular blue syntype label, circular red type label, "aethiops Dist., 632 (= BMNH registration number for 1838 "1 Salda presented by Morgan from Sierra Leone"), 26. 'OPHTHALMICUS RUFICEPS, BMNH(E) 1340476, NHMUK 010591759, 1♀, syntype; circular blue syntype label, Calabar (Rutherford), aethiops Dist., BMNH(E) 1340475, NHMUK 010591758, 1♀, syntype; circular blue syntype label, Calabar (Rutherford) [hw?], BMNH(E) 1340474, NHMUK 010591757, 1 unsexed spec., syntype.

Geocoris nr. amabilis Stål, 1855 (in order of appearance in Figs. 25–28): Ghana: Ashanti region, Kyadaso, 320 m, N 6 42—W 1 39, Dr. S. Endrődy-Younga, Nr. 498, singled, 1.–14.ii.1972, 1♀, P. Kóbor det. (HNHM);

Democratic Republic of the Congo: Coll. Mus. Congo, M'Paka, Terr. Libenge, xii.1959, 1♀, M. Pecheur, P. Kóbor det. (EKKH); Uganda NC, 20 km NE of Gulu, Patiko anv., 5.xii.2001, 1♂, M. Snizek lgt., P. Kóbor det. (NHMW); Zambia (NW), 90 km fr. Solwezi, E. Chisasa, 9.xi.2005, 1♀, leg. Snizek, P. Kóbor det. (NHMW).

Rhyparochromidae

Gyndes pallicornis (Dallas, 1852): NW Thailand, Mae Hong Son, Ban Si Lang, 1200 m a.s.l., 1.−8.v.1992, 1♂, J. Horák lgt., E. Kondorosy det. (NMPC) [6.37 mm] (Fig. 2). New country record.

Pentatomidae

Carbula aliena **Distant, 1918**: India, Tamil Nadu, Salem, Yercaud, 29.ix.2021, 1♀, Maruthi K. V. lgt., Ex. *Scrophularia* sp., Salini, S. det. (NIM) [10.11 mm] (Fig. 11).

Dalpada oculata (Fabricius, 1775): India, Arunachal Pradesh, Renging, East Siang, 23.1233°N, 95.2761°E, 28.ix.2022, 1♂, Salini, S. lgt. and det. (NIM) [22.21 mm] (Fig. 10).

Neottiglossa lineolata (Herrich-Schäffer, 1830): Portugal, Algarve Prov., 1 km E of Junqueira, Vila Real de S^{to} António env. (37°15′15″N 7°27′37″W), 2.–4.iv.2004, 1♂, J. Skuhrovec lgt., P. Kment det. (NMPC) [4.90 mm] (Fig. 20).

Picromerus griseus (Dallas, 1851): India, Himachal Pradesh, Nauni, Solan, 18.viii.2019, 1♀, Mahendiran G., Salini, S. det. (NIM) (Fig. 15); India, Himachal Pradesh, Nauni, Solan, unknown date, 1♀, Y. S. Palmer University, Salini, S. det. (NIM) (Fig. 16); India, Himachal Pradesh, Nauni, Solan, unknown date, 1♂ 1♀, Y. S. Palmer University, Salini, S. det. (NIM) (1♀—Fig. 17; 1♂—Fig. 18); India, Sikkim, Mongou, 28.iii.2013, Hemi/Pent. 3857, Ex. Weed Plant, NBAIR/Pent-34/2016, 1♀, P. P. Bhatt lgt., Salini, S. det. (NIM) [15.18 mm] (Fig. 12); India, Sikkim, Mongou, 28.iii.2013, Hemi/Pent. 3857, Ex. Weed Plant, NBAIR/Pent-34/2016, 1♀, P. P. Bhatt, Salini, S. det. (NIM) (Fig. 14); India, Uttarakhand, Kafligair, 30.ix.2024, 1♀, Mahendiran G., Salini, S. det. (NIM) (Fig. 19).

Podops inunctus (Fabricius, 1775): Czech Republic, Bohemia centr., Lysá nad Labem, Jedličkova str. 23 (50°12′3.4″N 14°50′44.9″E), garden, margin of lawn, under stone, 29.v.2021, 1♀, P. Kment lgt. and det. (NMPC) [6.57 mm] (Fig. 21).

Tarisa pallescens Jakovlev, 1871: Tajikistan, Kolkhozabad (37°39′55″N 68°35′32″E), shrubs on the Vakhsh river, 16.vii.2014, 1♀, A. Taszakowski lgt., P. Kment det. (NMPC) [5.59 mm] (Figs. 23–24).

Zicrona caerulea (Linnaeus, 1758): India, Tripura, Bishalgarh, 23°40′26.4″N 91°16′54.1″E, 29.x.2024, 1♀, Hatwar, N. K. lgt., Salini, S. det. (NIM) [9.45 mm] (Fig. 13).

Scutelleridae

Eurygaster hottentota (Fabricius, 1775): Algeria, Oran env., 1.vi.1969, 1♀, Dr. Tesař lgt., A. Carapezza det. (NMPC) [11.47 mm] (Fig. 22).

Corrections

Abdel-Gaber, R., R. Alajmi, R. Haddadi and S. El-Ashram. 2021. The phylogenetic position of *Arhaphe deviatica* within hemipteran insects: A potential model species for eco-devo studies of symbiosis. Journal of Experimental Zoology B, Molecular Development and Evolution 336(1): 73–78.

Haddadi, R., R. Alajmi, and R. Abdel-Gaber. 2019. A comparative study of insect succession on rabbit carrion in three different microhabitats. Journal of Medical Entomology 56(3): 671–680.

Haddadi et al. (2019) provided a study of insect succession on rabbit carcasses exposed in three differenet microhabitats during winter in Riyadh City, Saudi Arabia. They identified 22 species of insects, including one species of Hemiptera: *Arhaphe deviatica* Brailovsky, 1981 of the family Largidae. The collected species were identified both morphologically (despite none of the three cited papers devoted to forensic entomology was suitable for the identification of *A. deviatica*), and using 16S rRNA sequences. The paper does not mention which species were identified using the molecular identification protocols, but simply stated that a 'total [of?] 240 randomly selected insect specimens of different species collected at different stages'; additionally, the sequences produced were not deposited in any on-line depository (i.e., GenBank), and cannot be verified.

Subsequently, Abdel-Gaber et al. (2021) published a separate paper trying to assess the phylogenetic position of *A. deviatica* through the analysis of the partial 16S rRNA gene region, and indicated that their specimen was identical to *A. deviatica* from Guanacaste, Costa Rica (GenBank accession number KX523387, in Gordon et al. 2016). Neither of the two above cited papers provided a photograph of the voucher specimen of *A. deviatica*, listed

its depository, or mentioned that the species has never been recorded previously from the Old World. In addition, the record of *A. deviatica* from Saudi Arabia was omitted in the catalogue of the Near East Largidae by Moulet et al. (2024).

Arhaphe deviatica is distributed in Costa Rica, Honduras, Mexico, and Nicaragua (Brailovsky 1981, Stehlík and Brailovsky 2016), being one of the 27 described species of the remarkable mutilomorphic genus Arhaphe Herrich-Schäffer, 1850, which are distributed in North and Central America from Illinois, Tennessee and Virginia in the north to Costa Rica in the south, with the highest species diversity found in Mexico (Brailovsky 1981, Stehlík and Kment 2011, Stehlík and Brailovsky 2016).

We have downloaded the sequence (GenBank accesion number MK063898) from Abdel-Gaber et al. (2021) and blasted it in GenBank. The 16S sequence does not match with any of the included species to a reasonable confidence level, and does not allow for placement of it even within a genus. The MK063898 sequence shows a 91.95% similarity with the Sehirinae (Cydnidae) species *Ochetostethomorpha secunda* J.A. Lis and B. Lis, 2014 (which was described from Namibia) (GenBank accesion number PP357132.1), and only a 80.09% similarity with *A. deviatica* from Guanacaste, Costa Rica (GenBank accession number KX523387, in Gordon et al. 2016). The findings presented in Abdel-Gaber et al. (2021) are probably neither incorrect nor the result of taxonomic misidentification, but rather they have been deliberately fabricated to produce the desired outcome. As a result, *Arhaphe deviatica* is removed from the Old World fauna due to lack of any evidence.

Al-Edani, A. A. Z. S. and D. K. Kareem. 2015. Diagnosis and ecological distribution of aquatic (Hemiptera: Heteroptera) in Sullein Marsh in Basrah, South of Iraq [sic!]. Mesopotamian Journal of Marine Sciences 30(1): 33–46.

Al-Edani and Kareem (2015) presented an ecological study of the water bug fauna in Sullein Marsh, environs of Basrah, in South Iraq. They recorded four species of aquatic and semiaquatic bugs. Two species, Sigara lateralis (Leach, 1817) (Corixidae) and Mesovelia vittigera (Horváth, 1895), appear to be correctly identified. The record of Plea leachi (McGregor and Kirkaldy, 1899), a junior synonym of P. minutissima Leach, 1817, needs further confirmation due to the recent discovery of another cryptic pygmy backswimmer species in the West Palaearctic, Plea cryptica Raupach, Charzinski, and Hendrich, 2024 (see Raupach et al. 2024, Prokin and Sazhnev 2025). However, the record of the fourth species, Macrovelia hornii (Uhler, 1872), family Macroveliidae, is a clear misidentification. The provided illustrations depict a specimen of a *Microvelia* sp. (Veliidae: Microveliinae) but the figures (Al-Edani and Kareem 2015: picture 4, fig. 3 [sic!]), in particular of the wing, do not seem to match exactly with any of the known species of Microvelia Westwood, 1834 recorded from Iraq—M. gracillima Reuter, 1882, and M. macani Brown, 1953 (Linnavuori 1994, Andersen 1995), or the neigbouring areas (e.g., M. arabica arabica Brown, 1951; M. hozari Hoberlandt, 1952; M. popovi Brown, 1951—see Andersen 1995, Linnavuori et al. 2011, Kment and Carapezza 2022). Surprisingly, the authors of the paper did not mention that the family Macroveliidae, restricted to the American continent, has never been recorded in the Old World. Macrovelia hornii (Fig. 1) is distributed in the western USA, from North Dakota south to Nebraska and New Mexico in the south, and Oregon and California in the west, extending also to Baja California, Mexico (Polhemus and Chapman, 1979, Froeschner 1988a, McPherson et al. 2005). For its precise identification see Polhemus and Chapman (1979) and Andersen (1982). Macrovelia hornii is here excluded from the list of the Iraqi and Palaearctic fauna.

- Askari, O., R. F. Pourabad, and S. Khaganinia. 2009. Faunistic study of Heteroptera of Zanjanroud Region in Zanjan Province of Iran. Munis Entomology and Zoology 4: 560–563
- Bolu, H. 2007. Population dynamics of lacebugs (Heteroptera: Tingidae) and its natural enemies in almond orchards of Turkey. Journal of Entomological Research Society 9: 33–37.
- Montazersaheb, H., A. A. Zamani, and H.-R. Pourian. 2024. Bioecology of the pear lace bug, *Stephanitis pyri* (F.) (Hemiptera: Tingidae) on walnut trees in Kermanshah Province, Iran. Journal of Entomological Society of Iran 44(2): 189–199.
- Samin, N. and R. E. Linnavuori. 2011. A contribution to the Tingidae (Heteroptera) from north and northwestern Iran. Entomofauna, Zeitschrift für Entomologie 32(25): 373–380.

Lis (2002) first determined that the widely distributed pest of fruit trees, *Stephanitis pyri* (Fabricius, 1775), actually consisted of two distinct species. The true *S. pyri* occurs in Europe, extending only to Turkish Anatolia (provinces of Amasya and Artvin), whereas *S. oschanini* Vasiliev, 1935 (= *S. hoberlandti* B. Lis, 2002) is distributed in the former Asian part of its distribution range (Afghanistan, Armenia, Azerbaijan, Georgia, Iran, Iraq, Jordan,

Kyrgyzstan, Tajikistan, Turkey (Asian part), Turkmenistan, and Uzbekistan), extending to Europe only in Tekirdağ Province in the Turkish Thrace (Golub 2002, Kment and Jindra 2006, Aukema et al. 2013, Dursun and Fent 2017). The European and Asian regions of Turkey are the only areas with known overlap of both species (Dursun and Fent 2017), and some of the published records require confirmation, e.g., the biological papers by Aysal and Kivan (2008) and Kivan and Aysal (2011) based on specimens from the Tekirdağ Province. The records of *S. pyri* from south-eastern Turkey (Bolu 2007) and Iran (Askari et al. 2009, Samin and Linnavuori 2011, Montazersaheb et al. 2024) certainly represent misidentifications of *S. oschanini* (see also Ghahari et al. 2012, Guilbert et al. 2024).

The distinguishing features of the two sibling species were provided by Lis (2002). For routine identification of both species the following characters are useful, some of them being illustrated here for the first time:

Stephanitis oschanini—hypocostal lamina generally uniseriate (Figs. 5, 5a: hl), subcostal area of hemelytron (Fig. 6: sa) not angulate with discoidal area (Fig. 6: da), both areas roundly swollen together, and body dorsally shiny with almost transparent areolae (Fig. 4).

Stephanitis pyri—hypocostal lamina regularly biseriate (Figs. 8, 8a: hl), subcostal area of hemelytron (Fig. 9: sa) not angulate with discoidal area (Fig. 9: da), both areas only slightly swollen, forming a distinct keel, and body dorsally slightly shiny with clouded areolae (Fig. 7).

Dhali, S. and N. Ray. 2021. On taxonomic account of lygaeoidean fauna (Lygaeoidea: Heteroptera: Hemiptera) of Gorumara National Park and Chapramari Wildlife Sanctuary, West Bengal, India. Munis Entomology and Zoology 16(1): 233–254.

Dhali and Ray (2021) published an account of the Lygaeoidea fauna of the Gorumara National Park and Chapramari Wildlife Sanctuary, West Bengal, India. They listed and provided photos of eleven species, belonging to the families Lygaeidae (4 genera and 5 species) and Rhyparochromidae (5 genera and 6 species). However, five of the included taxa were misidentified, as it is documented by the photographs. The species Astacops occidentalis Distant, 1903 (Dhali and Ray 2021: fig. 2) represents a species of the family Rhopalidae, genus *Leptocoris* Hahn, 1833 of which there are seven species known from India (Carapezza and Kment 2024). Astacops occidentalis is a doubtful taxon known only from its holotype from 'Assam, Silhet' (currently Sylhet, Bangladesh); there is no reliable record from India (see Scudder 1963). Also the record of Lanchnophorus singalensis (Dohrn, 1860) (Dhali and Ray 2021, as Lachnophorus [sic] singalensis: fig. 8) is actually a species of Dieuches Dohrn, 1860 near D. indicus Eyles, 1973 but its correct identification is uncertain without examination of the specimen. For identification, habitus photo, and distribution of Lanchnophorus singalensis see Kment et al. (2017) and van der Heyden (2024). Under the name of Pseudopachybrachius guttus (Dallas, 1852), there is a different species, probably Humilocoris cephalotes (Kiritshenko, 1931) (Dhali and Ray 2021, fig. 9). The true Pseudopachybrachius guttus is presented in fig. 10 (Dhali and Ray 2021), being identified as P. undulatus (Dohrn, 1860). Pseudopachybrachius guttus was described from India (Dallas 1852), but P. undulatus remains a species incertae sedis. Slater (1979) cited it as occurring in Ceylon [= Sri Lanka]. Later, Zheng and Slater (1985) mentioned it only once during their revision of *Pseudopachybrachius* Malipatil, 1978, but said nothing about its identity. Based on the original description (Dohrn 1860), it could be identical with P. guttus. Gyndes pallicornis (Dallas, 1852) (Fig. 2) is a well-known species occurring in India; it was described from the "East Indies," Walker (1872) listed it from North Hindostan, and later Distant (1903) provided more precise localities. Its specimens are not similar to those of *Horridipamera nietneri* (Dohrn, 1860), which is illustrated in fig. 11 as G. pallicornis (Dhali and Ray 2021). Furthermore, the name Elasmolomus pallens (Dallas, 1852) is a junior subjective synonym of E. squalidus (Gmelin, 1790) (see Péricart 2001) but it appears that the identification of this species is correct as illustrated on fig. 7 of Dhali and Ray (2021).

Gupta, R., I. S. Sidhu, and D. Singh. 2015. Studies on two Indian species of genus *Graptostethus* Stal (Hemiptera: Lygaeidae). Journal of Entomology and Zoology Studies 2015 3(3): 283–286.

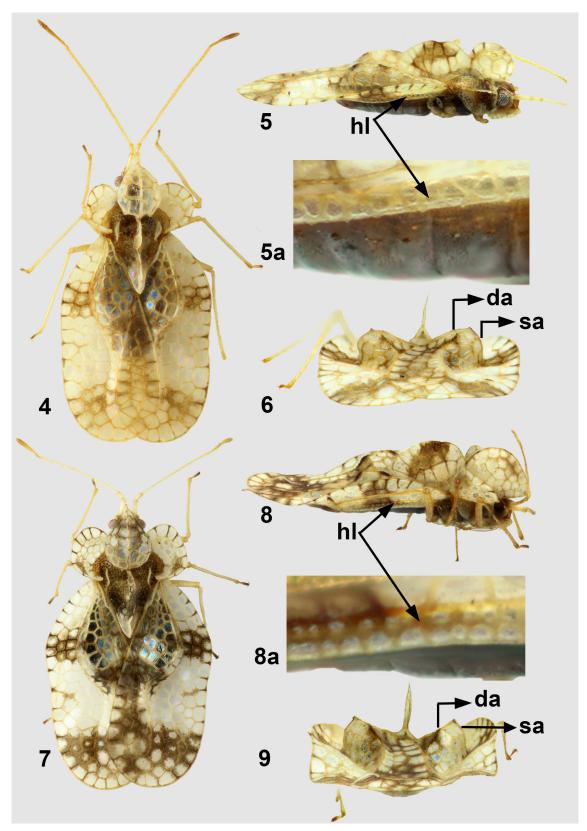
Gupta et al. (2015) aimed to redescribe the two lygaeine species *Graptostethus nigriceps* Stål, 1874 and *G. quadrisignatus* Distant, 1879, based on material from northern India (Himachal Pradesh, Punjab and Uttarakhand). They also provided habitus and various body-part photographs, including the male genital capsule, parameres, aedeagus, female terminalia, and the spermatheca. The identification of *G. quadrisignatus* appears to be correct; however, *G. nigriceps* has a black head except for a small central spot on the vertex instead of an equally red and black coloured head as is shown in fig. 2 (Gupta et al. 2015). *Graptostethus nigriceps* is known from many islands

FIGURES 1–3. Dorsal habitus. 1, *Macrovelia hornii* (Uhler, 1872) (Macroveliidae), ♀, USA: Colorado (body length 4.12 mm). 2, *Gyndes pallicornis* (Dallas, 1852) (Rhyparochromidae), ♂, Thailand: Mae Hong Son (6.37 mm). 3, *Graptostethus nigriceps* Stål, 1874 (Lygaeidae), ♂, Solomon Islands: Guadalcanal (8.33 mm). Photos by P. Kment.

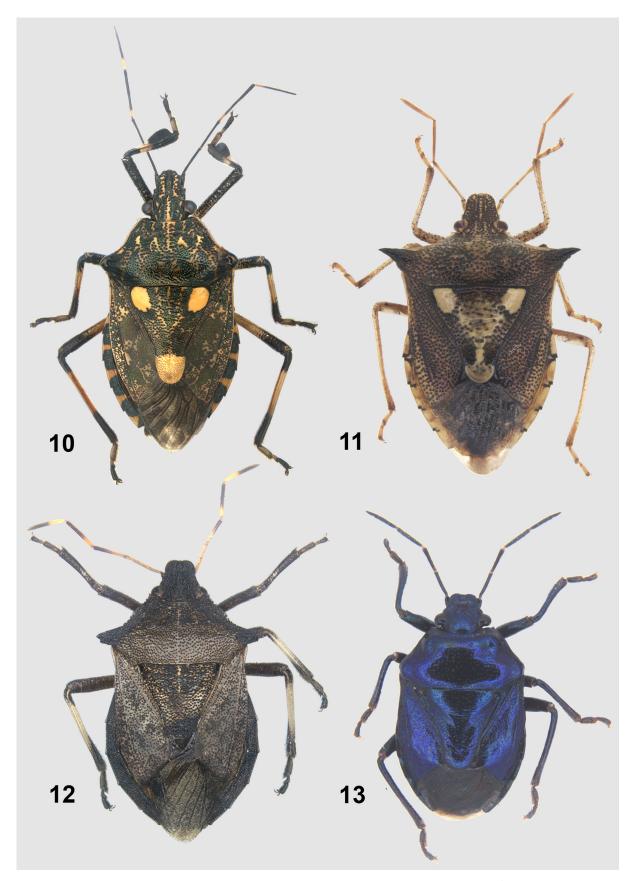
of the Pacific Region from Guam (Stål 1874) to Tahiti (Barber 1958); the record by Mason and Maxwell-Lefroy (1912) from India is probably erroneous. Gupta et al. (2015) in the synonymic list of G. nigriceps listed G. incomptus (Herrich-Schäffer, 1847), G. servus (Fabricius, 1787), and several synonymous names of these last species, despite some of these names are older and have priority over G. nigriceps. Although G. nigriceps was originally described as variety of G. servus, in the 20th century almost all authors considered it as a separate species (for references see Slater 1964 and Slater and O'Donnell 1995), and also consider G. incomptus as valid. The specimen illustrated in Figs. 1-11 (Gupta et al. 2015), could belong either to G. servus or to G. incomptus, both known from India. For G. incomptus, see the type locality of its junior subjective synonym G. inaequalis Walker, 1872 (synonymized by Horváth 1900); for G. servus, many references are available from Dallas (1852) onwards (e.g., Distant 1903). Based on the study of the types and the original descriptions (see also Kondorosy et al. 2006), the three species can be identified among others by the pubescence of the pronotum (only G. servus has longer erect setae) and the coloration of the head (only G. nigriceps has head almost completely black—Fig. 3), G. incomptus has a partially red head and a short setation. Contrary to Gupta et al. (2015), who stated that 'According to Distant (1904 [actually published in 1903], 1910, 1918) only three species have been reported from British India,' there are actually seven species of *Graptostethus*, which were published already by the cited Distant books (including the controversial *G. nigriceps*). Based on the geographical distribution of G. nigriceps and the unconfirmed distributional data of this species from India, we are convinced that G. nigriceps should be deleted from the species list of India.

Hassan, M. E., P. Shree, and R. Kumar. 2025. Description of a new species of *Piezodorus* sp. Fieber (Hemiptera: Pentatomidae) from India with identification key. Asian Journal of Biology 21(3): 57–63.

Piezodorus brevis Hassan, Shree and Kumar, 2025, syn. nov. = Piezodorus hybneri (Gmelin, 1790)


Hassan et al. (2025) described a new species in the family Pentatomidae, Piezodorus brevis Hassan, Shree and Kumar, 2025, based on eight specimens collected in Amravati District of Maharashtra, India. They differentiated the new species from Piezodorus hybneri (Gmelin, 1790), mainly based on external colouration, density of punctation on the body surface, and the shape of the male genital capsule. According to them, the new species is closely related to P. hybneri, being distinguished from the latter by the yellowish-brown coloured pronotum with a white band between pronotal angles and the subpentagonal shape of the genital capsule with a median U-shaped notch. Piezodorus hybneri is a very widely distributed species in Africa, Madagascar, Yemen, Iran, East Palaearctic and Oriental regions (for details see Nicolas et al. 2024). It is common in India (Salini and Viraktamath 2015), occurring in various colour forms, such as light green or creamy yellow specimens with a purplish or white pronotal band and yellowish brown, or light brown forms with a purplish or white pronotal band. The colour of the pronotal band varies from light reddish or pink to white or cream coloured (see Salini 2020: fig. 31, Salini et al. 2025: fig. 94) without any corresponding variation in genitalic structures. Figures 7 and 9 of the genital capsule by Hassan et al. (2025) are quite poor, and the claimed subpentagonal shape with a median U-shaped notch are not evident on them. Moreover, there is no difference in the various genitalic structures of *Piezodorus brevis* when compared to those of P. hybneri (see Salini 2015: 960–969). Piezodorus brevis clearly falls within the infraspecific variability of P. hybneri and therefore it is considered here to be a junior subjective synonym of the latter species.

Jadhav, S. R. U. and D. B. Goswami. 2021. Biodiversity of Pentatomoidea bugs (Hemiptera—Heteroptera) of Surganatehsil, Nashik District, Maharashtra, India. Journal of Emerging Technologies and Innovative Research 8(7): d58–d63.


Jadhav and Goswami (2021) recorded ten species belonging to nine genera representing three families of Pentatomoidea (Pentatomidae, Dinidoridae, and Tessaratomidae) from Surganatehsil, Maharashtra, India. However, they incorrectly listed the dinidorid Megymenum parallelum Vollenhoven, 1868 in the Pentatomidae and cited Coridius brunneus (Thunberg, 1783) still as Aspongopus brunneus, despite the fact that the genus Aspongopus Laporte, 1833 has been considered to be a junior objective synonym of *Coridius* Illiger, 1807 since Schumacher (1924) (see e.g., Durai 1987, Boyane et al. 2024). They also recorded two species of Halyomorpha Mayr, 1864, H. picus (Fabricius, 1794), widespread in India, and the East Palaearctic H. halys (Stål, 1855), an invasive species in Euro-Mediterranean as well as North and southern South America. Unfortunately they provided no evidence to support the identification of H. halvs, a species whose distribution in India has been rejected several times in the past as misidentifications of the former species (see Salini et al. 2021; Kment et al. 2021a,b, 2024), which is also the case of this paper. The name *Halys dentatus* (Fabricius, 1775) is a junior synonym of *Halys sulcatus* (Thunberg, 1783), which forms together with H. magnus Chopra, 1974 and H. brocchus Gapon, 2023 a taxonomically complicated complex whose species can only be identified correctly only based on the structure of the male genitalia (see Ghauri 1988, Salini 2019, Gapon 2023, Kment 2025). Furthermore, H. sulcatus would be the only species of this complex recorded from Maharashtra if the identification by Jadhav and Goswami (2021) is correct, so it cannot be accepted without a more detailed and documented re-examination of the specimen(s). Finally, the photograph documenting the record of Dalpada oculata (Fabricius, 1775), a rather large species (20-25 mm—see Fig. 10) of the tribe Halyini, is instead depicting a considerably smaller species of the genus Carbula Distant, 1918, probably Carbula aliena Distant, 1918 (7.5–9.0 mm)—see Fig. 11), of the tribe Eysarcorini (see also Pal et al. 2023). It must be said that Jadhav and Goswami (2021) did not used any relevant identification literature on Indian Pentatomoidea later than Distant (1902, 1904, 1906) which renders their results as highly unreliable.

Mangi, S., A. M. Shaikh, W. A. Panhwar, W. Khan, and M. Shah. 2021. Systematic studies of *Canthecona furcellata* (Wolf 1851) (Hemiptera: Pentatomidae: Asopinae) from Khairpur, Sindh, Pakistan. Pure and Applied Biology 10 (3): 928–934.

Mangi et al. (2021) studied the shield bug *Canthecona furcellata* (Wolff, 1851) based on specimens collected in Khairpur and its environs in Sindh, Pakistan. They provided a redescription of the species along with a dorsal habitus photograph and line drawings of the male and female genitalia (Mangi et al. 2021: figs. A–E). *Canthecona furcellata* actually does not belong in the genus *Canthecona* Amyot and Serville, 1843, which is restricted to Africa, but to the Oriental *Eocanthecona* Bergroth, 1915 (see Thomas 1994, Rider 2006). Moreover, examination of the habitus photograph illustrates that the authors misidentified the genus and species, which actually belongs to the genus *Picromerus* Amyot and Serville, 1843, and is most probably the widely distributed *P. griseus* (Dallas, 1851), known

FIGURES 4–9. Distinguishing characters of *Stephanitis oschanini* Vasiliev, 1935 and *S. pyri* (Fabricius, 1775) (Tingidae). 4–6, *S. oschanini*, Iran: Shahi. 4, Dorsal habitus, ♂ (body length 2.94 mm) 5, Body in lateral view, ♀ (5a—magnified detail of uniseriate hypocostal lamina). 6, Detail of hemelytra in posterior view, ♀ 7–9, *S. pyri*, Czech Republic: Brno-Černá Pole. 7, dorsal habitus, ♀ (body length 3.24 mm). 8, Body in lateral view, ♂ (8a—magnified detail of biseriate hypocostal lamina). 9, Detail of hemelytra in posterior view, ♂ Abbreviations: da—discoidal area, hl—hypocostal lamina, sa—subcostal area. Photos by P. Kment.

FIGURES 10–13. Habitus of Pentatomidae species. 10, *Dalpada oculata* (Fabricius, 1775), ♂, India: Arunachal Pradesh (body length 22.21 mm). 11, *Carbula aliena* Distant, 1918, ♀, India: Tamil Nadu (body length 10.11 mm). 12, *Picromerus griseus* (Dallas, 1851), ♀, India: Sikkim (body length 15.18 mm). 13, *Zicrona caerulea* (Linnaeus, 1758), ♂, India: Tripura (body length 9.45 mm). Photos by S. Salini.

from both Pakistan and India (Ahmad 1981, Zhao et al. 2013, Souma et al. 2023, Salini et al. 2024). *Picromerus orientalis* Rishi and Abbasi, 1973, described and known only from Pakistan (Rishi and Abbasi 1973, Rana and Ahmad 1988), is herein synonymized with *P. griseus* (see below).

Mangi, S., A. M. Shaikh, W. A. Panhwar, J. A. Ujjan, F. Somroo, S. P. Solangi, S. M. Mastois, and R. Kumar. 2023. A contribution to the Asopinae (Hemiptera: Pentatomidae) with one new record of predatory stink bug *Zicrona caerulea* (Linnaeus 1758) from District Khairpur Sindh, Pakistan. Pakistan Journal of Weed Science Research 29(1): 29–36.

Mangi et al. (2023) supposedly redescribed the species *Zicrona caerulea* (Linnaeus, 1758) (Pentatomidae: Asopinae), based on specimens collected in the environs of Khairpur, Sindh, Pakistan, and provided a dorsal habitus photograph and line drawings of the male and female genitalia (Mangi et al. 2021: figs. 1A–E). However, the depicted species is representative of the genus *Eysarcoris* Hahn, 1834 (Pentatomidae: Pentatominae: Eysarcorini), which is not at all related or similar to *Z. caerulea*. In fact, they are currently placed in two separate subfamilies. There are nearly a dozen species of *Eysarcoris* recorded from India (Walker 1867; Distant 1902, 1908, 1918; Kirkaldy 1909; Chatterjee 1934; Azim and Shafee 1984; Datta et al. 1985; Rider 1998) but the one redescribed by Mangi et al. (2023) cannot be identified based on the provided evidence.

Mzhr, N. N. and R. S. Augul. 2019. Additional information about hemipteran guild which stored in the Iraq Natural History Museum. Biochemical and Cellular Archives 19 (Supplement 1): 2531–2535.

Mzhr and Augul (2019) provided records of 13 species belonging to 11 genera and 8 families of true bugs from Iraq, based on material deposited in the Iraq Natural History Museum. All recorded species are illustrated by habitus photographs, which provides evidence of several misidentifications.

Deraeocoris ruber (Linnaeus, 1758) is an elongate species, 6.5–7.5 mm long, strongly punctured dorsally (Wagner 1974). The specimen attributed to this species (Mzhr and Augul 2019: figs. 1A–B), for which a scale is provided, cannot possibly belong to this taxon because it is merely 4.3 mm long, distinctly oval, and shallowly punctured. Its correct identification is *Liocoris tripustulatus* (Fabricius, 1781), which is already known from Iraq (Kerzhner and Josifov 1999).

Orthotylus caprai (Wagner, 1955) belongs to the subgenus Parapachylops Ehanno and Matocq, 1990. One of the characters of the subgenus is the dorsal pubescence consisting only of long, semierect, whitish to brown setae, without silvery adpressed setae (Ehanno and Matocq 1990). So, the specimen in the relevant photo (Mzhr and Augul 2019: fig. 2, labeled as Deraeocoris punctulatus), showing evident silvery adpressed setae, cannot possibly belong to any species of Parapachylops. It is a member of the genus Melanotrichus Reuter, 1875, very probably M. flavosparsus (C. R. Sahlberg, 1841), which is already known from Iraq (Kerzhner and Josifov 1999).

The specimen in photo 4A (Mzhr and Augul 2019) identified as *Beosus maritimus* (Scopoli, 1763) is, in fact, *Dieuches schmitzi* Reuter, 1893. Both species are already known from Iraq (Péricart 2001). The distinguishing features of both genera (see Eyles 1973 or Péricart 1999) are not visible in fig. 4A, but the shape and colouration of the pronotum and the membrane are sufficient for the identification.

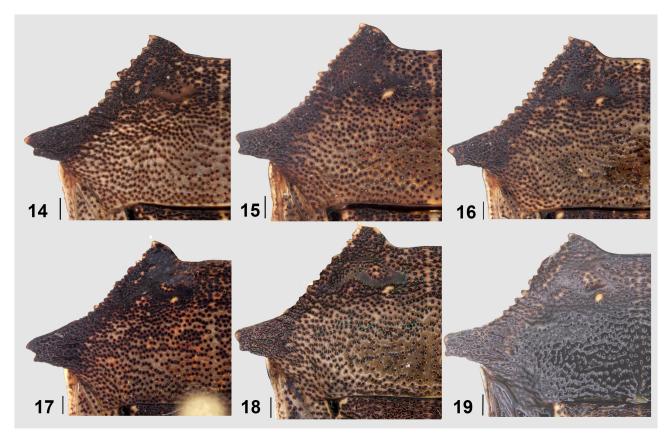
The specimens assigned to *Melanocoryphus superbus* (Pollich, 1781) [the current combination is *Horvathiolus superbus* (Pollich, 1781)] are in fact *Horvathiolus syriacus* (Reuter, 1885), as shown by two details evident in the photographed specimen (Mzhr and Augul 2019: fig. 5): posterior black spots on the pronotum with the anterior margins laterally sinuated, and the elongate shape of the apical white spot on the hemelytral membrane (Dioli 1978, Péricart 1999). *Horvathiolus syriacus* has already been recorded from Iraq (Péricart 2001).

Rana, N., T. Bakhat, A. S. Khan, K. Fatima, S. Javed, M. Imran, T. Amin, S. Fatima, and M. Z. Iqbal. 2018. Susceptible clusters and trophic structure of various insects' order among okra (*Abelmoschus esculentus*) and bean (*Phaseolus vulgaris*) fields. Journal of Entomology and Zoology Studies 6(1): 82–90.

Rana et al. (2018) studied the prevalence of the orders Coleoptera, Diptera, Hemiptera, and Hymenoptera on okra and bean fields in the district Tehsil Khan Pur, Punjab, Pakistan. They did not cite any paper relevant for the identification of true bugs. They reported eight species of Heteroptera: *Gminatus australis* (Erichson, 1842) (Reduviidae) (cited as *Geminatus australis*), *Arocatus longiceps* Stål, 1872 (Lygaeidae), *Geocoris punctipes* (Say, 1832) (Geocoridae), *Cletus* sp. and *Hypselonotus punctiventris* Stål, 1862 (Coreidae), *Corizus hyoscyami*

(Rhopalidae), *Neottiglossa undata* (Say, 1832), and *Piezodorus lituratus* (Fabricius, 1794) (Pentatomidae). Of these species, *Gminatus australis* is restricted to Australia and Tasmania (Malipatil 1991); *Arocatus longiceps* is a specialist species living on plane trees (*Platanus* spp.) native in the Mediterranean area, reaching easternmost to Fars in Iran (Péricart 1999, 2001; Linnavuori 2011; Ghahari et al. 2024); *Geocoris punctipes* occurs in the USA, Caribbean Islands, Central America to Colombia, and the Hawaiian Islands (Slater 1964, Baranowski and Slater 2005); *Hypselonotus punctiventris* occurs from the southwestern USA to Guatemala and Honduras (Froeschner 1988b, Packauskas 2010, Chordas et al. 2011, Linares and Orozco 2017); *Corizus hyoscyami hyoscyami* is a widely distributed Palaearctic species extending also to the Oriental Region (Dolling 2006); *Neottiglossa undata* is confined to southern Canada and the USA (Froeschner 1988c, Rider 1989); and finally *Piezodorus lituratus* is widely distributed in the West and Central Palaearctic Regions, reaching eastwards to East Siberia, Northwest China, Kazakhstan and Iran, but not reaching the Oriental Region where it is replaced by *P. hybneri* (Gmelin, 1790) (Rider 2006). To sum up, of the eight recorded taxa, only several species of the genus *Cletus* Stål, 1860 (Ahmad 1981) and *Corizus hyoscyami* (Ahmad et al. 1979, Ahmad and Rizvi 1998) actually occur in Pakistan; the rest of the records are clearly erroneous. In our opinion, this work is just another case of the authors' and editor's incompetence, and there is no other possibility than to ignore this publication.

Rishi, Z. and Q. A. Abbasi. 1973. A new species of *Picromerus* Amyot and Serville (Heteroptera: Pentatomidae: Aspini [sic!]) from Pakistan. Pakistan Journal of Zoology 5: 193–195.


Picromerus orientalis Rishi and Abbasi, 1973, syn. nov. = Picromerus griseus (Dallas, 1851)

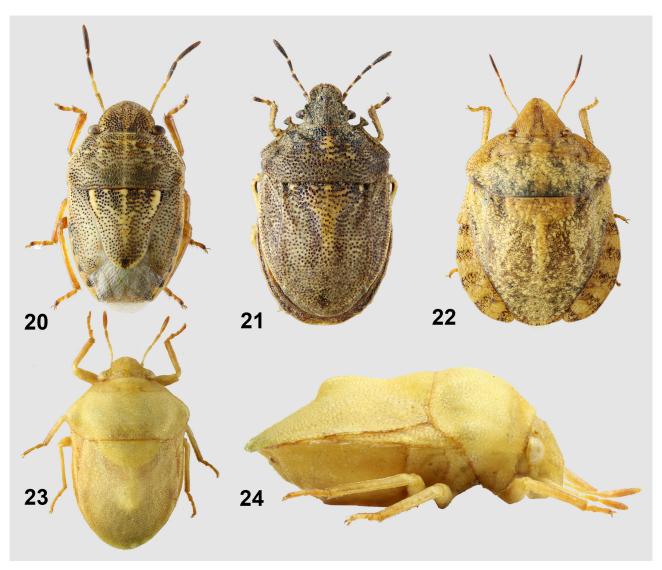
Despite focusing primarily on papers published in 2000 and afterwards, when writing the above comments on Mangi et al. (2021), we discovered an obvious synonym which needs to be addressed. Rishi and Abbasi (1973) described *Picromerus orientalis* based on a single female from Donga Gali, Muree, Pakistan. They compared the new species with *Picromerus obtusus* Walker, 1867, a junior subjective synonym of *P. griseus* (Dallas, 1851), from which the authors alleged that *P. orientalis* differs by its larger size, the pronotal angles almost blunt (dorsal spine larger and sharply pointed in *P. griseus*), and the costal area not regulose [sic!, = rugulose] (costal area rugulose in *P. griseus*). However, the length of the pronotal angles as well as the length and acuteness of the bifurcate humeral angles of the pronotum are variable. Pronotal angles can be short or slightly longer, the length of the anterior angulation of the bifid apex can be longer, as long as, or shorter than the posterior angulation. Similarly, the anterior angulation can be acute, obtuse or even rounded (see Figs. 14–19). As a result, *P. orientalis* clearly fits into the intraspecific variation range of *P. griseus* and is considered here to be its junior subjective synonym. *Picromerus griseus* is a widely distributed species ranging from Pakistan in the west to southern China, Japan (Ryukyus: Ishigaki Island), Taiwan and Indonesia (Java) (Ahmad 1981, Thomas 1994, Zhao et al. 2013, Souma et al. 2023, Salini et al. 2024).

Samin, N. and R. E. Linnavuori. 2015. A faunistic study on Heteroptera (Insecta) from some regions of eastern Iran. Linzer Biologische Beiträge 47(2): 1811–1817.

The paper of Samin and Linnavuori (2015) provided supposed records of 22 species of Heteroptera from 6 families (Alydidae, Berytidae, Largidae, Miridae, Piesmatidae and Reduviidae) from eastern Iran, provinces Kerman and Khorasan. Among them was the first record of *Physopelta gutta gutta* (Burmeister, 1834) and the family Largidae from Iran, based on two female specimens from Zarand [30°48′49″N, 56°34′02″E], Kerman, April 2008. The species was not illustrated, and the depository of the material examined was not stated. This record was accepted in the catalogues by Ghahari et al. (2016) and Moulet et al. (2024), but Linnavuori's co-authorship of the paper has been in question (see Kment and Wilson 2017: 527).

Physopelta gutta is a widely distributed subspecies in the East Palaearctic and Oriental regions, reaching from Afghanistan and Pakistan in the west to the Great Sundas and Philippines in the east (Stehlík 2013). In Pakistan, the species is known from Khyber Pakhtunkhwa (Ahmad and Abbas 1987, Ahmed and Bajwa 2016) and Punjab (Ahmad and Abbas 1987, Stehlík 2013) and, in Afghanistan, it is limited to the easternmost regions in provinces of Nuristan and Kabul, being found only in the valleys of the tributaries of the Indus River (Stehlík 2013). The Iranian locality, Zarand, is situated in a desert area, ca. 1300 km southwest from the closest confirmed locality, Sarobi in Kabul Province. This locality is situated outside the known geographical and ecological range of *Ph. gutta gutta*.

FIGURES 14–19. *Picromerus griseus* (Dallas, 1851). Pronotal angles showing variability in length and angulation. Scale – 0.5 mm. Photos by S. Salini.


Based on the provided evidence, we consider the record of *Ph. gutta gutta* from Iran as poorly documented, and if it is indeed correct, the species is probably not native in the area. The occurrence of *Ph. gutta gutta* in Iran needs confirmation.

Tsagkarakis, A., Z. Thanou, A. Chaldeou, I. Moschou, A. Kalaitzaki, and S. Drosopoulos. 2022. New records and updated checklist of the Pentatomoidea (Hemiptera: Heteroptera) of Greece. Insects 13(749): 1–29.

Tsagkarakis et al. (2022) provided a checklist of the Pentatomoidea fauna of Greece, along with a number of faunistic records for these true bugs based on materials from the collection of the late Sakis Drosopoluos, an eminent Greek specialist in Auchenorrhyncha (see Emmanouel and Tsagkarakis 2014, Hoch et al. 2015). Eight species were recorded as new records for Greece and illustrated by colour habitus photographs. Unfortunately, four of the new records are based on misidentifications, which need to be clarified here.

The species identified as *Neottiglossa lineolata* (Herrich-Schäffer, 1830), reported as a new record for Greece, is in fact *N. bifida* (A. Costa, 1847). In the photo of the specimen (Tsagkarakis et al. 2022: fig. 11), the apex of scutellum clearly surpasses the apices of the coria, as in *N. leporina* and *N. bifida*, whereas in *N. lineolata* they are of the same length. The apical part of the scutellum is 0.6 times wider than the basal part and the rounded apex of scutellum indicate clearly that the specimen belongs to *N. bifida*, a species already known from Greece (Derjanschi and Péricart 2005, Rider 2006).

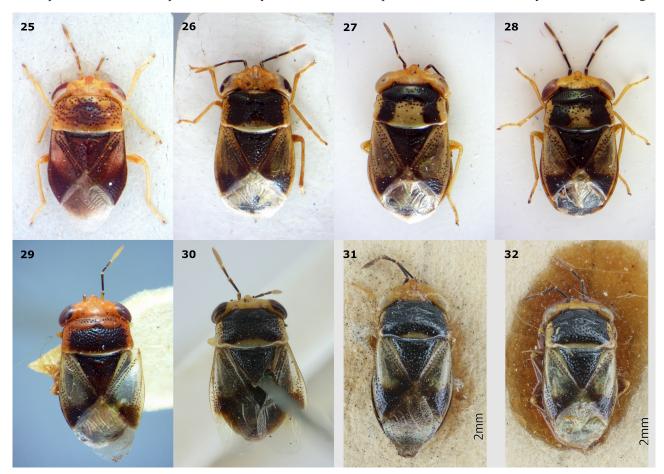
The species recorded as *Podops* (*Podops*) inunctus (Fabricius, 1775), is in fact *P.* (*Opocrates*) curvidens A. Costa, 1843, which is clearly documented by the following details apparent in the photo of the specimen (Tsagkarakis et al. 2022: fig. 17): clypeus anteriorly not free as in *P. inunctus*, but enclosed by the apices of the mandibular plates; projections of the anterolateral margins of the pronotum not axe-shaped as in *P. inunctus*, but in the form of triangular spines directed obliquely forward; lateral sides of the pronotum are not straight as in *P. inunctus*, but clearly concave as is typical for *P. curvidens* (Derzhansky 2000, Péricart 2010). *Podops curvidens* is already known from Greece (see Rider 2006, Péricart 2010).

FIGURES 20–24. Habitus of Pentatomidae and Scutelleridae species. 20, *Neottiglossa lineolata* (Herrich-Schäffer, 1830) (Pentatomidae), ♂, Portugal: Algarve (body length 4.90 mm). 21, *Podops (Podops) inunctus* (Fabricius, 1775) (Pentatomidae), ♀, Czech Republic: Lysá nad Labem (6.57 mm). 22, *Eurygaster hottentotta* (Fabricius, 1775) (Scutelleridae), ♀, Algeria: Oran (11.47 mm). 23–24, *Tarisa pallescens* Jakovlev, 1871 (Pentatomidae), ♀, Tajikistan: Kolkhozabad (5.59 mm). 23, Dorsal view. 24, Lateral view. Photos by P. Kment.

Tarisa pallescens Jakovlev, 1871, also reported as a new record for Greece, is in fact *Psacasta* (*Cryptodontus*) neglecta (Herrich-Schäffer, 1837), which is evident in the provided photo of the specimen (Tsagkarakis et al. 2022: fig. 18). Virtually, no similarities exist between the two taxa, belonging to two different families: *T. pallescens* to the Pentatomidae: Podopinae (see Péricart 2010), and *P. neglecta* to the Scutelleridae. *Psacasta neglecta* is a new record for the fauna of Greece (cf. Göllner-Scheiding 2006); for identification of the species, see e.g. Josifov (1981).

The record of *Eurygaster hottentotta* (Fabricius, 1775), also reported as new for Greece, refers in fact to *E. austriaca* (Schrank, 1776), as shown by the photo of the specimen (Tsagkarakis et al. 2022: fig. 21), which exhibits the following characters typical of the latter species: oblong shape, dorsal surface smooth without warts, clypeus enclosed anteriorly by the mandibular plates, and the modestly expanded connexivum (see Batzakis 1972, Josifov 1981). *Eurygaster austriaca* is already known from Greece (Batzakis 1972, Göllner-Scheiding 2006), whereas the West Mediterranean *E. hottentotta* should be excluded from the fauna of continental Greece (cf. Göllner-Scheiding 2006).

As for the Greek islands, *E. hottentotta* in the past was certainly present in Crete whence it was reported by Reuter (1891) and Batzakis (1972); the latter, who was a notorious expert of the genus *Eurygaster* Laporte, 1833,


recorded two specimens collected on the island in June 1956. Batzakis' record was ignored by Heckmann et al. (2015) who regarded the record by Reuter as doubtful. However, the species has never been found again in the next seventy years, though Crete has been explored by several expert heteropterists in recent decades (e.g., Carapezza 1984; Heiss 1983, 1984, 1985, 1988; Heiss and Günther 1986; Heiss and Hopp 1987; Heiss et al. 1993, Matocq and Pluot-Sigwalt 2006, Pagola-Carte and Rieger 2021). There is an old record also for the island of Santorini (Hiller von Gaertringen 1909). According to Rieger (1995) "this record refers very likely to *Eurygaster austriaca* Schrk., whose occurrence on Santorini seems quite possible."

The fact that so many misidentifications occurred in a manuscript on a European fauna, for which several dozen competent reviewers are available, casts serious doubts about the review and the editorial process of the journal *Insects*.

van der Heyden, T. 2025a. New records of Heteroptera from the Canary Islands (Spain), XVI. Arquivos Entomolóxicos 32: 87–88.

van der Heyden, T. 2025b. New records of Heteroptera from the Canary Islands (Spain), XVIII. Arquivos Entomolóxicos 32: 343–344.

The first records of *Geocoris amabilis* Stål, 1855 (Geocoridae) from the islands of Gran Canaria and Tenerife were published recently by van der Heyden (2025a, b). All the records were based on photographs posted on the iNaturalist.org website without any exoskeletal or genital characters compared and/or discussed. Therefore, it is to be assumed that the identification was based solely on colour patterns, which, though used routinely, are insufficient for species-level diagnosis of many species of *Geocoris* Fallén, 1814 (see e.g., Torre-Bueno 1946, Kerzhner 1979, Malipatil 1994). *Geocoris aethiops* Distant, 1901 is another species of African *Geocoris* with a very similar general appearance and overlapping distribution area (see Dellapé and Henry 2025a, b for summarised distribution data). Both species exhibit colour-pattern variability of the antennae, the pronotum, and/or the hemelytron, as seen in Figs.

FIGURES 25–32. Variation of colour pattern in the discussed *Geocoris* species. 25–28, *G*. nr. *amabilis* Stål, 1855. 25, ♀, Yemen. 26, ♀ (syntype), Sierra Leone. 27–28, ♀♀ (syntypes), Nigeria. 29–32, *G*. nr. *aethiops* Distant, 1901. 29, ♀, Ghana. 30, ♀, Democratic Republic of the Congo. 31, ♂, Uganda. 32, ♀, Zambia (figures are not to scale). Photos by P. Kóbor.

25–32. However, based on the existing descriptions, no structural characters of diagnostic value are known (hence, we refer to the examined specimens as nr. = "near to"). Thus, the relationship between the two species is subject to further discussion based on a thorough morphological examination of a series of specimens. Taking the above into account, the identity of the insects in the two photographs published cannot be determined unequivocally; thus, these faunistic records are not to be recognised until specimens can be examined.

Post Scriptum

If you encounter additional papers containing misidentifications or nomenclatural errors pertaining to Heteroptera systematics, please send them to the first author (PK). We are already planning the preparation of Corrections to Published Papers on Heteroptera (Hemiptera), Part III.

Acknowledgments

We thank Jerzy A. Lis (Institute of Biology, University of Opole, Poland) for consultation on the identification of some Cydnidae. The work of P. Kment was financially supported by the Ministry of Culture of the Czech Republic (DKRVO 2024–2028/5.I.b, National Museum of the Czech Republic). The work of P. Kóbor was supported by the János Bolyai Research Grant of the Hungarian Academy of Sciences. Salini is grateful to S. N. Sushil (Director, ICAR-NBAIR, Bangalore, India) for the facilities extended for this work and her research supported by the Indian Council of Agricultural Research, Department of Agricultural Research and Education, Government of India.

Literature Cited

- Ahmad, I. 1981. A revision of the superfamilies Coreoidea and Pentatomoidea (Heteroptera: Pentatomomorpha) from Pakistan, Azad Kashmir and Bangladesh. Part 1: Additions and corrections of coreid and pentatomid fauna with phylogenetic considerations. Supplement of the Entomological Society of Karachi 4(1)[1979]: 1–113.
- Ahmad, I. and N. Abbas. 1987. A revision of the family Largidae (Hemiptera: Pyrrhocoroidea) with description of a new genus from Indo-Pakistan subcontinent and their relationships. Türkiye Bitki Koruma Dergisi 11(3): 131–142.
- Ahmad, I. and S. A. Rizvi. 1998. A new species of the wheat-feeding genus *Corizus* Fallen (Hemiptera: Rhopalidae) from Baluchistan with cladistic relationships. Proceedings of the Pakistan Congress of Zoology 18: 41–44.
- Ahmad, I., M. U. Shadab, I. Abrar, and A. A. Khan. 1979. Generic and suprageneric keys with reference to a checklist of rhopalid fauna of Pakistan and Bangladesh (Heteroptera: Coreoidea) with notes on their distribution and food plants. Supplement of the Entomological Society of Karachi 4(3): 1–14.
- Ahmed, N. and G. A. Bajwa. 2016. Hemiptera fauna of Haripur District, Pakistan. Pakistan Entomologist 38(1): 43-45.
- Andersen, N. M. 1982. The Semiaquatic Bugs (Hemiptera, Gerromorpha). Phylogeny, Adaptations, Biogeography and Classification. Entomograph, Vol. 3. Scandinavian Science Press Ltd., Klampenborg. 455 pp. https://doi.org/10.1163/9789004631267
- Andersen, N. M. 1995. Infraorder Gerromorpha Popov, 1971 semiaquatic bugs, pp. 17–114. *In* Aukema B. and Ch. Rieger, eds. Catalogue of the Heteroptera of the Palaearctic Region. Vol. 1. Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha and Leptopodomorpha. The Netherlands Entomological Society, Amsterdam. xxvi + 222 pp.
- Aukema, B., Ch. Rieger, and W. Rabitsch. 2013. Catalogue of the Heteroptera of the Palaearctic Region. VI. Supplement. The Netherlands Entomological Society, Amsterdam. xxiii + 629 pp.
- Aysal, T. and M. Kivan. 2008. Development and population growth of *Stephanitis pyri* (F.) (Heteroptera: Tingidae) at five temperatures. Journal of Pest Science 81: 135–141. https://doi.org/10.1007/s10340-008-0198-9
- Azim, M. N. and S. A. Shafee. 1984. Indian species of the genus *Stollia* Ellenrieder (Heteroptera: Pentatomidae). Mitteilungen der Schweizerishen Entomologischen Gesellschaft 57: 291–293.
- Baranowski, R. M. and J. A. Slater. 2005. The Lygaeidae of the West Indies. University of Florida, IFAS Florida Agricultural Experimental Station, Gainsville. x + 266 pp.
- Barber, H. G. 1958. Insects of Micronesia. Heteroptera: Lygaeidae. Insects of Micronesia 7(4): 172-218.
- Batzakis, B. D. 1972. Morphological characters of the Greek species of *Eurygaster* Laporte, 1832 (Heteroptera: Pentatomidae). Annales de l'Institut Phytopathologique Benaki 10: 267–279.
- Boyane, S. S., S. Sen, D. R. Priyadarsanan, P. K. Thunga, N. U. Joshi, and H. V. Ghate. 2024. Integrative taxonomy of the genus *Coridius* Illiger, 1807 (Hemiptera: Heteroptera: Dinidoridae) reveals hidden diversity and three new species from North-East India. PLoS ONE 19(7) (e0298176): 1–42. https://doi.org/10.1371/journal.pone.0298176

- Brailovsky, H. 1981. *Arhaphe* H. S., descripción de nuevas especies (Hemiptera: Heteroptera: Largidae). Folia Entomológica Mexicana 47: 81–109.
- Burkett-Cadena, N. D. and R. E. Harbach. 2025. Correction: Misidentification of a distinct species of *Mansonia* in India as the New World *Psorophora columbiae* (Diptera: Culicidae). Zootaxa 5609(2): 298–300. https://doi.org/10.11646/zootaxa.5609.2.11
- Carapezza, A. 1984. Miridi nuovi o poco noti di Grecia e Creta. Bollettino della Società Entomologica Italiana 116: 5-9.
- Carapezza, A. and P. Kment. 2024. Review of the newly established *amictus*-subgroup of the genus *Leptocoris* (Hemiptera: Heteroptera: Rhopalidae), with the description of a new species from the Arabian Peninsula. Journal of the International Heteropterists' Society 1(2): 79–106. https://doi.org/10.11646/jihs.1.2.1
- Chatterjee, N. C. 1934. Entomological investigations on the spike disease of sandal (24). Pentatomidae (Hemipt.). Indian Forest Records 20: 1–31.
- Chordas, S. W. III, R. Tumlinson, H. W. Robinson, and J. Kremers. 2011. Twenty three true bug state records for Arkansas, with two for Ohio, U.S.A. Journal of the Arkansas Academy of Science 65: 153–159. https://doi.org/10.54119/jaas.2011.6517
- Dallas, W. S. 1852. List of the specimens of hemipterous insects in the collection of the British Museum. Part II. Taylor and Francis Inc., London. 369–592 pp.
- Datta, B., L. K. Ghosh, and M. Dhar. 1985. Study on Indian Pentatomoidea (Heteroptera: Insecta). Records of the Zoological Survey of India 80: 1–43.
- Dellapé, P. M. and T. J. Henry. 2025a. *Geocoris (Geocoris) aethiops* Distant, 1901. Lygaeoidea Species File. https://lygaeoidea.speciesfile.org/otus/917332/overview (last accessed on September 9, 2025).
- Dellapé, P. M. and T. J. Henry. 2025b. *Geocoris (Geocoris) amabilis amabilis* Stål, 1855. Lygaeoidea Species File. https://lygaeoidea.speciesfile.org/otus/917453/overview (last accessed on September 9, 2025).
- Derjanschi, V. V. and J. Péricart. 2005. Hémipteres Pentatomoidea Euro-Méditerranéens. Volume 1. Faune de France, Vol. 90. Fédération Française des Sociétés de Sciences Naturelles, Paris. 494 pp. + 16 pls.
- Derzhansky, V. V. 2000. Obzor shchitnikov roda *Podops* Lap. (Heteroptera, Pentatomidae) Rossii i sopredel'nykh stran. (A review of schield [sic!] bugs of the genus *Podops* Lap. (Heteroptera, Pentatomidae) of Russia and neighbouring countries). Entomologicheskoe Obozrenie 79(1): 45–48. (in Russian, English summary)
- Dioli, P. 1978. *Horvathiolus syriacus* (Reuter) nuovo per l'Italia e osservazioni sulle specie italiane del genere (Heteroptera Lygaeidae). Bollettino della Società Entomologica Italiana 110(9): 177–179.
- Distant, W. L. 1902. Rhynchota. Vol I. (Heteroptera). *In* Blanford, W. T., ed. The Fauna of British India Including Ceylon and Burma. Taylor and Francis, London. xxxviii + 438 pp.
- Distant, W. L. 1903–1904. Rhynchota. Vol II. (Heteroptera). Blanford, W. T., ed. The Fauna of British India Including Ceylon and Burma. Taylor and Francis, London. xvii + 503 pp. [Published in two parts: pp. 1–242. (December 1903), pp. 243–503 (April 1904)—see the Preface, p. iii.]
- Distant, W. L. 1906. Rhynchota. Vol III. (Heteroptera-Homoptera). *In* Bingham C. T., ed. The Fauna of British India Including Ceylon and Burma. Taylor and Francis, London. xiv + 503 pp.
- Distant, W. L. 1908. Rhynchota Vol. IV. Homoptera and appendix (Pt). *In* Bingham, C.T., ed. The Fauna of British India Including Ceylon and Burma. Taylor and Francis, London, xv + 501 pp.
- Distant, W. L. 1910. Rhynchota. Vol V. Heteroptera: Appendix. *In* Shipley, A. E. and G. A. K. Marshall, eds. The Fauna of British India Including Ceylon and Burma. Taylor and Francis, London. xii + 362 pp.
- Distant, W. L. 1918. Rhynchota. Vol. VII. Homoptera: Appendix. Heteroptera: Addenda. *In* Shipley, A. E. and G. A. K. Marshall, eds. The Fauna of British India Including Ceylon and Burma. Taylor and Francis, London. viii + 210 pp.
- Dohrn, F. A. 1860. Zur Heteropteren-Fauna Ceylon's. Stettiner Entomologishe Zeitung 21: 399-409.
- Dolling, W. R. 2006. Family Coreidae Leach, 1815, pp. 43–101. *In* Aukema, B. and Ch. Rieger, eds. Catalogue of the Heteroptera of the Palaearctic Region. Volume 5. Pentatomomorpha II. The Netherlands Entomological Society, Amsterdam. xiii + 550 pp.
- Durai, P. S. S. 1987. A revision of the Dinidoridae of the world (Heteroptera: Pentatomoidea). Oriental Insects 21: 163–360. https://doi.org/10.1080/00305316.1987.11835477
- Dursun, A. and M. Fent. 2017. Annotated checklist of Tingidae (Hemiptera: Heteroptera) in Turkey with new records for the faunas of Europe and Turkish Thrace. Zootaxa 4347(3): 465–491. https://doi.org/10.11646/zootaxa.4347.3.3
- Ehanno, B. and A. Matocq. 1990. Compléments à la Faune de France des Hétéroptères Miridae. *Orthotylus (Parapachylops* n. subgen.) *armoricanus* n. sp. Bulletin de la Société Entomologique de France 94: 265–272. https://doi.org/10.3406/bsef.1989.17611
- Emmanouel, N. G. and A. E. Tsagkarakis. 2014. Sakis Drosopoulos: Obituary. Entomologia Hellenica 23: 43–44. https://doi.org/10.12681/eh.11534
- Eyles, A. C. 1973. Monograph of the genus *Dieuches* Dohrn (Heteroptera: Lygaeidae). Otago Daily Times Ltd., Dunedin. 465 pp.
- Froeschner, R. C. 1988a. Family Macroveliidae McKinstry, 1942. Macroveliid Water Bugs, p. 246. *In* Henry T. J. and R. C. Froeschner, eds. Catalog of the Heteroptera, or True Bugs, of Canada and the Continental United States. E. J. Brill, Leiden, New York, Kobenhaven, Köln. xix + 958 pp. https://doi.org/10.1163/9789004590601_023
- Froeschner, R. C. 1988b: Family Coreidae Leach, 1815. The Coreid Bugs, pp. 69–92. *In* Henry T. J. and R. C. Froeschner, eds. Catalog of the Heteroptera, or True Bugs, of Canada and the Continental United States. E. J. Brill, Leiden, New York,

- Kobenhaven, Köln. xix + 958 pp. https://doi.org/10.1163/9789004590601_011
- Froeschner, R. C. 1988c. Family Pentatomidae Leach, 1815. The Stink Bugs, pp. 544–597. *In* Henry, T. J. and R. C. Froeschner, eds. Catalog of the Heteroptera, or True Bugs, of Canada and the Continental United States. E. J. Brill, Leiden, New York, Kobenhaven, Köln. xix + 958 pp.
- Gapon, D. A. 2023. On the morphology and taxonomy of the genera *Halys* and *Neohalys* (Heteroptera: Pentatomidae: Halyini). Zoosystematica Rossica 32(2): 342–383. https://doi.org/10.31610/zsr/2023.32.2.342
- Ghahari, H., S. Montemayor, P. Moulet, and R. E. Linnavuori. 2012. An annotated catalogue of the Iranian Tingidae (Hemiptera: Heteroptera). Zootaxa 3207: 22–39. https://doi.org/10.11646/zootaxa.3207.1.2
- Ghahari, H., P. Moulet, T. van der Heyden, and G. E. E. Scudder. 2024. Family Lygaeidae Schilling, 1829, pp. 1265–1298. *In* Ghahari, H., P. Moulet, and J. E. McPherson, eds. True bugs (Heteroptera) of the Middle-East. Springer Nature, Singapore. xxiv + 1471 pp. https://doi.org/10.1007/978-981-97-1817-7_34
- Ghahari, H., P. Moulet, and H. Ostovan. 2016. Annotated catalog of the Iranian Cimicidae and Largidae (Hemiptera: Heteroptera) and in memoriam Carl Walter Schaefer (1934–2015). Zootaxa 4111(2): 194–200. https://doi.org/10.11646/zootaxa.4111.2.8
- Ghauri, M. S. K. 1988. A revision of Asian species of the genus *Halys* Fabricius based on the type material (Insecta, Heteroptera, Pentatomidae, Pentatominae). Entomologische Abhandlungen Staatliches Museum für Tierkunde Dresden 51(6): 77–92.
- Göllner-Scheiding, U. 2006. Family Scutelleridae Leach, 1815 shield bugs, pp. 190–227. *In* Aukema, B. and Ch. Rieger, eds. Catalogue of the Heteroptera of the Palaearctic Region. Vol. 5. Pentatomomorpha II. The Netherlands Entomological Society, Amsterdam. xiii + 550 pp.
- Golub, V. B. 2002. On the status, synonymy and distribution of *Stephanitis oschanini* Vasiliev with corrected data on the distribution of *S. pyri* (Heteroptera: Tingidae). Zoosystematica Rossica 11: 154. https://doi.org/10.31610/zsr/2002.11.1.154
- Gordon, E. R. L., Q. McFrederick, and C. Weirauch. 2016. Phylogenetic evidence for ancient and persistent environmental symbiont reacquisition in Largidae (Hemiptera: Heteroptera). Applied and Environmental Microbiology 82(24): 7123–7133. https://doi.org/10.1128/AEM.02114-16
- Guilbert, E., H. Ghahari, B. Lis, P. Moulet, and J. E. McPherson. 2024. Family Tingidae Laporte de Castelnau, 1833, pp. 769–815. *In* Ghahari, H., P. Moulet, and J. E. McPherson, eds. True bugs (Heteroptera) of the Middle-East. Springer Nature, Singapore. xxiv + 1471 pp. https://doi.org/10.1007/978-981-97-1817-7 59
- Heckmann, R., G. Strauss, and S. Rietschel. 2015. Die Heteropterenfauna Kretas. Carolinea 73: 83-130.
- Heiss, E. 1983. Heteropteren aus Kreta I (Insecta: Heteroptera). Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck 70: 135–144.
- Heiss, E. 1984. Heteropteren aus Kreta II (Insecta: Heteroptera). Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck 71: 141–155.
- Heiss, E. 1985. Heteropteren aus Kreta III (Insecta: Heteroptera). Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck 72: 173–181.
- Heiss, E. 1988. Heteropteren aus Kreta VI (Insecta: Heteroptera). Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck 75: 185–190.
- Heiss, E. and H. Günther. 1986. Heteropteren aus Kreta IV (Insecta: Heteroptera). Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck 73: 119–131.
- Heiss, E., H. Günther, Ch. Rieger, and H. Malicky. 1993. Heteroptera collected by light traps in Crete (Heteroptera from the Island of Crete VIII). Biologia Gallo-Hellenica 20: 107–114.
- Heiss, E. and I. Hopp. 1987. Heteropteren aus Kreta V (Insecta: Heteroptera). Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck 74: 185–195.
- Hiller von Gaertringen, F. (ed.) 1909. Thera. Untersuchungen, Vermessungen und Ausgrabungen in den Jahren 1895–1902. Bd. 4. Georg Reimer, Berlin, [1902–1909]. 202 pp.
- Hoch, H., M. Asche, and M. F. Claridge. 2015. Remembering Prof. Athanasios (Sakis) Drosopoulos (1944–2014) biosystematist, entomologist, colleague and friend. Entomologica Austriaca 22: 149–171.
- Horváth, G. 1900. Hemiptera. *In* Semon, R. W., ed. Zoologische Forschungsreisen in Australien und dem Malayischen Archipel. Denkschriften der Medizinisch-Naturwissenschaftlichen Gesellschaft zu Jena 8: 113–126.
- Josifov, M. 1981. Fauna na B'lgariya. Vol. 12. Heteroptera, Pentatomoidea. (Fauna Bulgarica. Vol. 12. Heteroptera, Pentatomoidea.) Izdatelstvo na B'lgarskata Akademiya na Naukite, Sofia, 204 pp. (in Bulgarian).
- Kerzhner, I. M. 1979. Poluzhestkokryly roda *Geocoris* (Heteroptera, Lygaeidae) fauny SSSR i Mongolii. (Bugs of the genus *Geocoris* (Heteroptera, Lygaeidae) from the USSR and Mongolia). Nasekomye Mongolii [= Insects of Mongolia] 6: 47–71 (in Russian, English title).
- Kerzhner, I. M. and M. Josifov. 1999. Cimicomorpha II. Miridae, pp. 1–577. *In* Aukema, B. and Ch. Rieger, eds. Catalogue of the Heteroptera of the Palaearctic Region. Volume 3. The Netherlands Entomological Society, Amsterdam. xiv + 577 pp.
- Kirkaldy, G.W. 1909. Catalogue of the Hemiptera (Heteroptera) with biological and anatomical references, lists of foodplants and parasites, etc. Prefaced by a discussion on nomenclature and an analytical table of families. Vol. I. Cimicidae. Felix L. Dames, Berlin. xl + 392 pp. https://doi.org/10.5962/bhl.title.15205
- Kivan, M. and T. Aysal. 2011. Adult survival rate and oviposition preference of *Stephanitis pyri* (F., 1775) (Heteroptera: Tingidae) on different plant species. Türkiye Entomoloji Dergisi 35: 169–178.
- Kment, P. 2025. New data on the distribution and variability of the genera Halys sensu lato and Neohalys (Hemiptera: Heteroptera:

- Pentatomidae). Journal of the International Heteropterists' Society 2(2): 86-103. https://doi.org/10.11646/jihs.2.2.2
- Kment, P. and A. Carapezza. 2022. Heteroptera (Hemiptera) of the Socotra Archipelago I: Introduction, Nepomorpha, Gerromorpha and Leptopodomorpha. Acta Entomologica Musei Nationalis Pragae 62(2): 475–519. https://doi.org/10.37520/aemnp.2022.026
- Kment, P., A. Carapezza, Z. Jindra, and E. Kondorosy. 2017. Review of the genus *Lanchnophorus* (Hemiptera: Heteroptera: Rhyparochromidae) with description of three new species and other nomenclatural changes. Zootaxa 4226(1): 47–74. https://doi.org/10.11646/zootaxa.4226.1.2
- Kment, P. and Z. Jindra. 2006. New and interesting records of true bugs (Heteroptera) from Turkey, southeastern Europe, Near and Middle East. Acta Entomologica Musei Nationalis Pragae 45 [2005]: 3–16.
- Kment, P., S. Salini, and Z. Ahmed. 2021a. *Halyomorpha picus* (Hemiptera: Heteroptera: Pentatomidae): First confirmed record from Pakistan and two new junior synonyms. Zootaxa 5060(3): 429–438. https://doi.org/10.11646/zootaxa.5060.3.8
- Kment, P., S. Salini, A. Carapezza, and D. A. Rider. 2024. Corrections to some recently published papers on Heteroptera (Hemiptera). Journal of the International Heteropterists' Society 1(4): 198–215. https://doi.org/10.11646/jihs.1.4.3
- Kment, P., S. Salini, D. Rédei, and D. A. Rider. 2021b. *Halyomorpha halys* fixed as the type species of the genus *Halyomorpha* (Hemiptera: Heteroptera: Pentatomidae). Acta Entomologica Musei Nationalis Pragae 61(2): 615–630. https://doi.org/10.37520/aemnp.2021.031
- Kment, P. and M. R. Wilson. 2017. Bibliography of Rauno E. Linnavuori. Entomologica Americana 122(4) [2016]: 513–527. https://doi.org/10.1664/1947-5144-122.4.513
- Kondorosy, E., C. H. C. Lyal, and M. D. Webb. 2006. Nomenclatorial changes in Oriental Lygaeinae seed bugs (Hemiptera: Heteroptera: Lygaeidae). Zootaxa 1383: 45–56. https://doi.org/10.11646/zootaxa.1383.1.3
- Linares, C. A. and J. Orozco. 2017. The Coreidae of Honduras (Hemiptera: Coreidae). Biodiversity Data Journal 5(e13067): 1–24. https://doi.org/10.3897/BDJ.5.e13067
- Linnavuori, R. E. 1994. Hemiptera of Iraq. IV. Heteroptera, the aquatic and subaquatic families, Saldidae and Leptopodidae. Entomologica Fennica 5(2): 87–95. https://doi.org/10.33338/ef.83798
- Linnavuori, R. E. 2011. Studies on the Cimicomorpha and Pentatomomorpha (Hemiptera: Heteroptera) of Khuzestan and the adjacent provinces of Iran. Acta Entomologica Musei Nationalis Pragae 51(1): 21–48.
- Linnavuori, R. E., P. Kment, and A. Carapezza. 2011. Order Hemiptera, suborder Heteroptera. Infraorders Nepomorpha, Gerromorpha, and Leptopodomorpha, pp. 72–107. *In* Harten, A. van, ed. Arthropod Fauna of the United Arab Emirates. Vol. 4. Multiply Marketing Consultancy Services, Abu Dhabi. 816 pp.
- Lis, B. 2002. *Stephanitis hoberlandti* a new West Palaearctic lace-bug species (Hemiptera: Heteroptera: Tingidae). Genus 13: 165–169.
- Malipatil, M. B. 1991. The generic classification of the Australian Harpactorinae (Heteroptera: Reduviidae). Invertebrate Taxonomy 4: 935–971. https://doi.org/10.1071/IT9900935
- Malipatil, M. B. 1994. Revision of Australian *Geocoris* Fallén and *Stylogeocoris* Montandon (Heteroptera: Lygaeidae: Geocorinae). Invertebrate Systematics 8(2): 299–327. https://doi.org/10.1071/IT9940299
- Mason, C. W. and H. Maxwell-Lefroy. 1912. The food of birds in India. Memoirs of the Department of Agriculture in India 3: 1–371.
- Matocq, A. and D. Pluot-Sigwalt. 2006. A new species of the genus *Closterotomus* Fieber from Crete (Hemiptera: Heteroptera: Miridae: Mirinae). Russian Entomological Journal 15: 171–174.
- McPherson, J. E., S. J. Taylor, S. L. Keffer, and J. T. Polhemus. 2005. Life history and laboratory rearing of a western U.S.A. hemipteran, *Macrovelia hornii* (Macroveliidae). Entomological News 116: 217–224.
- Moulet, P., N. Samin, J. E. McPherson, and H. Ghahari. 2024. Family Largidae Amyot and Serville, 1843, pp. 1099–1102. *In* Ghahari, H., P. Moulet, and J. E. McPherson, eds. True bugs (Heteroptera) of the Middle-East. Springer Nature, Singapore. xxiv + 1471 pp. https://doi.org/10.1007/978-981-97-1817-7_17
- Nicolas, V., A. Carapezza, D. A. Rider, and P. Kment. 2024. New records, diagnostics and preliminary checklist of the superfamily Pentatomoidea (Hemiptera: Heteroptera) from the Comoro Islands. Zootaxa 5481(1): 1–29. https://doi.org/10.11646/zootaxa.5481.1.1
- Packauskas, R. J. 2010. Catalog of the Coreidae, or leaf-footed bugs, of the New World. Fort Hays Studies, Fourth Series 5: 1–168. https://doi.org/10.58809/HCWH1818
- Pagola-Carte, S. and Ch. Rieger. 2021. Description of a new species of *Phytocoris* from Crete (Hemiptera: Heteroptera: Miridae). Heteropterus Revista de Entomología 21(2): 103–117.
- Pal, A., S. Dash, M. E. Hassan, and D. Gupta. 2023. Redescription of *Carbula aliena* Distant, 1918 (Hemiptera: Heteroptera: Pentatomidae) from West Bengal, India with reference to male genitalia and a key to the Indian species. Records of the Zoological Survey of India 123(i2S): 133–138. https://doi.org/10.26515/rzsi/v123/i2S/2023/172508
- Péricart, J. 1999. Hémiptères Lygaeidae Euro-Méditerranéens. Faune de França et régiones limitrophes. Vol. 84A. Fédération Française des Sociétés de Sciences Naturelles, Paris. xx + 468 pp + 6 pls.
- Péricart, J. 2001. Family Lygaeidae Schilling, 1829 Seed-bugs, pp. 35–220. *In* Aukema, B. and Ch. Rieger, eds. Catalogue of the Heteroptera of the Palaearctic Region. Vol. 4, Pentatomomorpha I. The Netherlands Entomological Society, Amsterdam. xiv + 346 pp.
- Péricart, J. 2010. Hémipteres Pentatomoidea Euro-Méditerranéens. Volume 3: Podopinae et Asopinae. Faune de France et régions limitrophes. Vol. 93. Fédération Française des Sociétés de Sciences Naturelles, Paris. 291 pp. + 24 pls.

- Polhemus, J. T. and H. C. Chapman. 1979. Family Macroveliidae, pp. 46–48. *In* Menke, A. S., ed. The semiaquatic and aquatic Hemiptera of California (Heteroptera: Hemiptera). Bulletin of the California Insect Survey 21: 1–166.
- Prokin, A. A. and A. S. Sazhnev. 2025. First records of *Plea cryptica* Raupach, Charzinski & Hendrich, 2024 (Heteroptera: Pleidae) from Russia. Transactions of Papanin Institute for Biology of Inland Waters RAS 109(112): 48–52. https://doi.org/10.47021/0320-3557-2025-48-52
- Rana, N. A. and I. Ahmad. 1988. Male and female genitalia of *Picromerus orientalis* Rishi and Abbasi 1973 (Pentatomidae: Pentatominae: Asopini) and its relationships. Sarhad Journal of Agriculture 4: 463–472.
- Raupach, M. J., N. Charzinski, A. Villastrigo, M. M. Gossner, R. Niedringhaus, P. Schäffer, S. Schmelzle, G. Strauß G., and L. Hendrich. 2024. The discovery of an overseen pygmy backswimmer in Europe (Heteroptera, Nepomorpha, Pleidae). Scientific Reports 14(28139): 1–21. https://doi.org/10.1038/s41598-024-78224-6
- Reuter, O. M. 1891. Griechische Heteroptera gesammelt von E. von Oertzen und J. Emge. Berliner Entomologische Zeitschrift 36(1): 17–34. https://doi.org/10.1002/mmnd.18910360107
- Richardson, R. A. K., S. S. Hong, J. A. Byrne, T. Stoeger, and L. A. N. Amaral. 2025. The entities enabling scientific fraud at scale are large, resilient, and growing rapidly. Proceedings of the National Academy of Sciences 122(32) (e2420092122): 1–11. https://doi.org/10.1073/pnas.2420092122
- Rider, D. A. 1989. Review of the New World species of the genus *Neottiglossa* Kirby (Heteroptera: Pentatomidae). Journal of the New York Entomological Society 97(4): 394–408.
- Rider, D. A. 1998. Nomenclatural changes in the Pentatomoidea (Hemiptera-Heteroptera: Cydnidae, Pentatomidae). II. Species level changes. Proceedings of the Entomological Society of Washington 100(3): 449–457.
- Rider, D. A. 2006. Family Pentatomidae Leach, 1815, pp. 233–402. *In* Aukema, B. and Ch. Rieger, eds. Catalogue of the Heteroptera of the Palaearctic Region. Vol. 5. Pentatomomorpha II. The Netherlands Entomological Society, Amsterdam. xiii + 550 pp.
- Rieger, Ch. 1995. Die Fauna der Ägäis-Insel Santorin. Teil 9) Heteroptera. Stuttgarter Beiträge zur Naturkunde, Serie A (Biologie) 520: 1–26.
- Salini, S. 2015. Systematic studies on Pentatomidae (Hemiptera: Pentatomoidea) of South India. Department of Agricultural Entomology, University of Agricultural Sciences, Bangalore, India, PhD Dissertation (unpublished). 385 pp.
- Salini, S. 2019. Revision of the genus *Halys* (Hemiptera: Pentatomidae) with description of a new species from India. Zootaxa 4586(2): 351–375. https://doi.org/10.11646/zootaxa.4586.2.9
- Salini, S. 2020. Pentatomidae (Hemiptera: Heteroptera: Pentatomidea) of India, pp. 121–146. *In* Ramani, S., P. Mohanraj, and H. M. Yeshwanth, eds. Indian Insects Diversity and Science, a Festschrift for Professor C. A. Viraktamath's 75th birthday, CRC Press, Taylor and Francis Group, Boca Raton, London, New York. xxii + 450 pp. https://doi.org/10.1201/97804290 61400-8
- Salini, S., K. M. Ajaykumara, K. J. David, G. Mahendiran, N. N. Rajgopal, S. S. Joshi, and S. N. Sushil. 2025. Pentatominae fauna (Hemiptera: Heteroptera: Pentatomidae) of India. An illustrated guide to species of economic importance. Technical Bulletin No. 01/2025, ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru, Karnataka, India. vii + 57 pp.
- Salini, S., K. J. David, S. Joshi, and S. N. Sushil. 2024. An illustrated guide for predatory pentatomids (Hemiptera: Heteroptera: Pentatomidae: Asopinae) from India. Technical Bulletin No. 20/2024, ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru, Karnataka. vi + 29 pp.
- Salini, S., K. J. David, and M. Pratheepa. 2021. Does India have the invasive brown marmorated stink bug, *Halyomorpha halys* (Stål). Current Science 120(2): 268–269.
- Salini, S. and C. A. Viraktamath. 2015. Genera of Pentatomidae (Hemiptera: Pentatomoidea) from South India an illustrated key to genera and checklist of species. Zootaxa 3924(1): 1–76. https://doi.org/10.11646/zootaxa.3924.1.1
- Schumacher, F. 1924. Zwei übersehene Hemipteren-Gattungen. Deutsche Entomologische Zeitschrift 1913: 335–337. https://doi.org/10.1002/mmnd.48019240404
- Scudder, G. G. E. 1963. A revision of the genus Astacops sensu lat. (Hemiptera: Lygaeidae). Pacific Insects 5(2): 315-415.
- Slater, J. A. 1964. A catalogue of the Lygaeidae of the world, Vol I–II. University of Connecticut, Storrs, Connecticut. i–xviii + 1–778 + 779–1668 pp.
- Slater, J. A. 1979. Hemiptera, Heteroptera: Lygaeidae from Sri Lanka (Ceylon). Report No. 45. Lund University Ceylon Expedition. Entomologica Scandinavica, Supplement 11: 1–27.
- Slater, J. A. and J. E. O'Donnell. 1995. A Catalogue of the Lygaeidae of the World (1960-1994). New York Entomological Society, New York. 410 pp.
- Souma, J., A. Utagawa, and T. Ishikawa. 2023. First record of the predatory stink bug species *Picromerus griseus* (Dallas) (Hemiptera, Heteroptera, Pentatomidae, Asopinae) in Japan, with an illustrated key to the Japanese species of the genus *Picromerus* Amyot & Serville. Biodiversity Data Journal 11(e105293): 1–12. https://doi.org/10.3897/BDJ.11.e105293
- Stål, C. 1874. Enumeratio Hemipterorum. Part 4. Kongliga Svenska Vetenskaps-Akademiens Handlingar 12: 1–186.
- Stehlík, J. L. 2013. Review and reclassification of the Old World genus *Physopelta* (Hemiptera: Heteroptera: Largidae). Acta Entomologica Musei Nationalis Pragae 53(2): 505–584.
- Stehlík, J. L. and H. Brailovsky. 2016. Review of the genus *Arhaphe* (Hemiptera: Heteroptera: Largidae) with descriptions of nine new species from Central America. Zootaxa 4093(4): 451–479. https://doi.org/10.11646/zootaxa.4093.4.1
- Stehlík, J. L. and P. Kment. 2011. Redescription of Pararhaphe and review of Arhaphe (Hemiptera: Heteroptera: Largidae) of

- America north of Mexico. Zootaxa 3058: 35-54. https://doi.org/10.11646/zootaxa.3058.1.3
- Thomas, D. B., Jr. 1994. Taxonomic synopsis of the Old World asopine genera (Heteroptera: Pentatomidae). Insecta Mundi 8: 145–212.
- Torre-Bueno, J. R. 1946. A synopsis of the Hemiptera-Heteroptera of America north of Mexico. III. Family XI. Lygaeidae. Entomologica Americana 26: 1–141.
- van der Heyden, T. 2024. First record of *Lanchnophorus singalensis* (Dohrn, 1860) (Hemiptera: Heteroptera: Rhyparochromidae) in Cyprus. Journal of the Heteroptera of Turkey 6(1): 7–8.
- Wagner, E. 1974. Die Miridae Hahn, 1831, des Mittelmeerraumes und der Makaronesischen Inseln (Hemiptera, Heteroptera). Teil 1: Bryocorinae, Deraeocorinae, Dicyphinae, Mirinae. Entomologische Abhandlungen der Staatlichen Museum für Tierkunde Dresden 37 (Supplementum) [1970–1971]: i–ii + 1–484. https://doi.org/10.1515/9783112653241
- Walker, F. 1867. Catalogue of the specimens of heteropterous Hemiptera in the collection of the British Museum. Part II. Scutata. E. Newman, London, 241–417 pp. https://doi.org/10.5962/bhl.title.118688
- Walker, F. 1872. Catalogue of the specimens of Hemiptera Heteroptera in the collection of the British Museum. Part V. London. 202 pp.
- Zhao, Q., G.-Q. Liu, and W.-J. Bu. 2013. A review of the Chinese species of the genus *Picromerus* Amyot and Serville, with description of a new species (Hemiptera: Heteroptera: Pentatomidae: Asopinae). Zootaxa 3613(2): 146–164. https://doi.org/10.11646/zootaxa.3613.2.3
- Zheng, L.-Y. and J. A. Slater. 1985. A revision of the lygaeid genus *Pseudopachybrachius* (Hemiptera). Systematic Entomology 9: 95–115. https://doi.org/10.1111/j.1365-3113.1984.tb00505.x