Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2020-04-21
Page range: 457–471
Abstract views: 133
PDF downloaded: 3

To the origin of Lake Baikal endemic gammarid radiations, with description of two new Eulimnogammarus spp.

Zoological Museum of Moscow State University, B. Nikitskaya 6, 125009 Moscow, Russia
White Sea Biological Station, Biological Faculty, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia. Department of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow 119234, Russia.
Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA. yampolsk@etsu.edu Corresponding author.
Crustacea

Abstract

Extraordinarily diverse morphologically and ecologically, Lake Baikal’s two endemic gammaroidean amphipod clades are both firmly placed within the paraphyletic genus Gammarus, based both on morphological and molecular characters. However, the exact placement of the two Baikal clades remains elusive, making reconstruction of the ancestral state of Baikal endemic radiation difficult. We sequenced 2 mitochondrial and 3 nuclear genes from several species of each of the two clades aiming to represent early branches of the radiation. We also describe two new species of Baikal gammarids, Eulimnogammarus etingovae sp. nov. and Eulimnogammarus tchernykhi sp. nov., with some morphology suggestive of basal position within the radiation. We confirm the two previously demonstrated Baikal clades, but cannot unequivocally support any of the previous hypotheses about affinities of the two Baikal clades within palearctic Gammarus species. Rather, it appears that the two Baikal endemic radiations separated from the rest of freshwater Palearctic forms early and rapidly, probably as part of gammarid diversification during colonization of fresh waters in Middle Eocene.

 

References

  1. Bazikalova, A.Y. (1945) Amphipods of Lake Baikal. In: Trudy Baikalskoj Limnologicheskoj Stantsii. Vol. 11. Akademiya Nauk SSSR, Moscow, pp. 1–440. [in Russian]

    Bergsten, J. (2005) A review of long-branch attraction. Cladistics, 21 (2), 163–193.

    https://doi.org/10.1111/j.1096-0031.2005.00059.x

    Bouckaert, R.R., Heled. J., Kuehnert, D., Vaughan, T.G., Wu, C.-H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. (2014) BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10 (4), e1003537

    https://doi.org/10.1371/journal.pcbi.1003537

    Colgan, D.J., McLauchlan, A., Wilson, G.D.F., Livingston, S., Edgecombe, G.D., Macaranas, J., Cassis, G., & Gray, M.R. (1998) Histone H3 and U2 snRNA DNA sequences and arthropod evolution. Australian Journal of Zoology, 46 (5), 10.1071, ZO98048.

    https://doi.org/10.1071/ZO98048

    Dybowsky, B. (1874) Beitrage sur naheren Kenntnis der im Baikalsee vorkommended niederen Krebse aur der Gruppe der Gammariden. W. Besobrasoff & Comp., St. Petersburg, 244 pp.

    https://doi.org/10.5962/bhl.title.9945

    Eberle, J., Myburgh, R. & Ahrens, D. (2014) The evolution of morphospace in phytophagous scarab chafers: no competition--no divergence? PLoS ONE, 9, e98536.

    https://doi.org/10.1371/journal.pone.0098536

    Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32 (5), 1792–1797.

    https://doi.org/10.1093/nar/gkh340

    Englisch, U., Coleman, C.O. & Wagele, J.W. (2003) First observations on the phylogeny of the families Gammaridae, Crangonyctidae, Melitidae, Niphargidae, Megaluropidae and Oedicerotidae (Amphipoda, Crustacea), using small subunit rDNA gene sequences. Journal of Natural History, 37 (20), 2461–2486.

    https://doi.org/10.1080/00222930210144352

    Geller, J., Meyer, C., Parker, M. & Hawk, H. (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources, 13 (5), 851–861.

    https://doi.org/10.1111/1755-0998.12138.

    Giribet, G., Carranza, S., Baguñà, J., Riutort, M. & Ribera, C. (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution, 13 (1), 76–84.

    https://doi.org/10.1093/oxfordjournals.molbev.a025573

    Gurkov, A., Rivarola-Duarte, L., Bedulina, D., Fernández Casas, I., Michael, H., Drozdova, P., Nazarova, A., Govorukhina, E., Timofeyev, M., Stadler, P.F. & Luckenbach, T. (2019) Indication of ongoing amphipod speciation in Lake Baikal by genetic structures within endemic species. BMC Evolutionary Biology, 19 (1), 138.

    https://doi.org/10.1186/s12862-019-1470-8

    Hou, Z., Fu, J. & Li, S. (2007) A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution, 45 (2), 596–611.

    https://doi.org/10.1016/j.ympev.2007.06.006

    Hou, Z., Sket, B., Fiser, C. & Li, S.Q. (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences of the USA, 108 (35), 14533–14538.

    https://doi.org/10.1073/pnas.1104636108

    Hou, Z. & Sket, B. (2016) A review of Gammaridae (Crustacea: Amphipoda): the family extent, its evolutionary history, and taxonomic redefinition of genera. Zoological Journal of the Linnean Society, 176 (2), 323–348.

    https://doi.org/10.1111/zoj.12318

    Huang, S., Roy, K. & Jablonski, D. (2015) Origins, bottlenecks, and present-day diversity: patterns of morphospace occupation in marine bivalves. Evolution, 69 (3), 735–746.

    https://doi.org/10.1111/evo.12608

    Kamaltynov, R.M. (2001) Amphipods (Amphipoda: Gammaroidea). In: Timoshkin, O.A. (Eds.), Index Of Animal Species Inhabiting Lake Baikal and Its Catchment Area. Vol. 1. Nauka Publ., Novosibirsk, pp. 572–831.

    Karaman, G.S. & Pinkster, S. (1977a) Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (crustacea-amphipoda). Part I. Gammarus pulex-group and related species. Bijdragen tot de Dierkunde, 47 (2), 1−97.

    https://doi.org/10.1163/26660644-04701001

    Karaman, G.S. & Pinkster, S. (1977b) Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (crustacea-amphipoda). Part II. Gammarus roeseli-group and related species. Bijdragen tot de Dierkunde, 47 (2), 165−196.

    https://doi.org/10.1163/26660644-04702003

    Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis. Version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870–1874.

    https://doi.org/10.1093/molbev/msw054.

    Le, H.L., Lecointre, G. & Perasso, R.A. (1993) 28S rRNA-based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. Molecular Phylogenetics and Evolution, 2 (1), 31–51.

    https://doi.org/10.1006/mpev.1993.1005.

    MacDonald, K.S., Yampolsky, L. & & Duffy, J.E. (2005) Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution, 35 (2), 323–343.

    https://doi.org/10.1016/j.ympev.2005.01.013

    Minelli, A. (2016) Species diversity vs. morphological disparity in the light of evolutionary developmental biology. Annals of Botany, 117 (5), 781–794.

    https://doi.org/10.1093/aob/mcv134

    Naumenko, S.A., Logacheva, M.D., Popova, N.V. Klepikova, A.V., Penin, A.A., Bazykin, G.A., Etingova, A.E., Mugue, N.S., Kondrashov, A.S. & Yampolsky, L.Y. (2017) Transcriptome-based hylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection. Molecular Ecology, 26 (2), 536–553.

    https://doi.org/10.1111/mec.13927

    Palumbi, S.R., Martin, A., Romano, S., McMillan, W.O., Stice, L. & Grabowski, G. (1991) The Simple Fool’s Guide to PCR, Version 2.0. Privately published, Univ. Hawaii, 1991

    Sket, B., Morino, H., Takhteev, V. &Rogers, D.C. (2019) Malacostraca: Amphipoda. In: D. C. Rogers and J. H. Thorp, eds. Thorp and Covich’s Freshwater Invertebrates V.IV: Keys to Palaearctic Fauna. Elsevier Academic Press, London, pp. 808–836.

    Sowinsky, V.K. (1915) Amphipoda ozera Baikala (Sem. Gammaridae). Zoologicheskiye issledovaniya ozera Baikala, IX. St Vladimir University Press, Kiev, 381 pp. [in Russian]

    Stebbing, T.R.R. (1899) Revision of Amphipoda. Annals and Magazine of Natural History, 7, 350.

    https://doi.org/10.1080/00222939908678132

    Takhteev, V.V. (2000) Essays on the amphipods of Lake Baikal (systematics, comparative ecology, evolution). Irkutsk State University Press, Irkutsk, 355 pp. [in Russian]

    Townsend, J.P., López-Giráldez, F. & Friedman, R. (2008) The phylogenetic informativeness of nucleotide and amino acid sequences for reconstructing the vertebrate tree. Journal of Molecular Evolution, 67 (5), 437–447.

    https://doi.org/10.1007/s00239-008-9142-0.

    Väinölä, R. & Kamaltynov, R.M. (1999) Species diversity and speciation in the endemic amphipods of Lake Baikal: molecular evidence. Crustaceana, 72, 945–956.

    https://doi.org/10.1163/156854099503843