Nothocasis rosariae sp. n., a new sylvicolous, montane species from southern Europe (Lepidoptera: Geometridae, Larentiinae)

STEFANO SCALERCIO1,3, MARCO INFUSINO1 & AXEL HAUSMANN2
1Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Unità di Ricerca per la Selvicoltura in Ambiente Mediterraneo, Rende, Italy
2SNSB—Zoologische Staatssammlung München, Germany
3Corresponding author: E-mail: stefano.scalercio@crea.gov.it

Abstract

In this paper, we describe Nothocasis rosariae sp. n. as the second European species belonging to the genus Nothocasis Prout, 1937. Differential features from its allopatric sibling species N. sertata (Hübner, 1817) are presented basing on wing pattern, morphology of male and female genitalia, and molecular data (COI barcode region). The type series is designated from southern Italy, but one examined specimen was collected in Epirus, Greece. The largest phenotypic and genetic variation was observed in the Pollino Massif, northern Calabria, whilst the population of the locus typicus in the Sila Massif, central Calabria, appears to be more homogeneous. 128 individuals were collected in mountainous beech forests from late August to mid-November. We hypothesize that larvae of N. rosariae sp. n. feed on Fagus sylvatica whilst those of its sibling species, N. sertata, feed on Acer.

Key words: new species, biodiversity, DNA barcode, Mediterranean forests, Italy

Introduction

The genus Nothocasis Prout, 1937 (Geometridae: Larentiinae) includes twelve known species mainly distributed in the eastern Palaearctic and northern Indo-Pacific regions (Scoble & Hausmann 2007; Hausmann & Viidalepp 2012). So far, Nothocasis sertata (Hübner, 1817) was considered to be the only species occurring in Europe. It has been recorded from central France to the Carpathians and from southernmost Sweden to the Alps. In southern Europe it occurs in very isolated populations in mountainous areas such as the Apennines and mountains of the Balkans. Easternmost isolated populations have been found in southern Ukraine, Caucasus and Transcaucacus (Hausmann & Viidalepp 2012).

Few synonymic names are existing in literature for Nothocasis sertata due to the putative absence of closely related species:

Lobophora sertata var. f. fumidata Turati & Verity, 1912 (Maritime Alps: Terme [di Valdieri], Italy);
Lobophora sertata f. tangens Wehrli, 1917 (Jura: Aargau and Basel, Switzerland) [intrasubspecific];
Acasis sertata f. viridulata Turati, 1919 (Northern Apennines (province of Modena): Sestola, 1000 m, Italy);
Lobophora sertata ab. dissoluta Höfer, 1920 (Lower Austria) [intrasubspecific];
Lobophora sertata ab. costimaculata Höfer, 1920 (Lower Austria) [intrasubspecific];
Lobophora sertata ab. neoasciata Höfer, 1920 (Lower Austria) [intrasubspecific];
Lobophora sertata var. nigroasciata Osthelder, 1929 (Bavaria: Allgäuer Alps, Germany). This form is identical to neoasciata Höfer, 1920 according to Prout (1936).
Lobophora sertata var. obscurata Osthelder, 1929 (Bavaria: Allgäuer Alps, Germany);
Lobophora sertata ab. (?) hilariata Dannenh, 1933 (Black Forest: Pforzheim, Germany) [intrasubspecific?—The author writes: “Derartige Falter erhielt ich wiederholt und in Anzahl aus dem Schwarzwald, wo sich vielleicht eine distinkte Rasse gebildet hat oder in der Bildung begriffen ist”].
Doubts about the identity of isolated populations of *Nothocasis sertata* in southern Europe arose thanks to DNA barcoding analyses. Hausmann & Viidalepp (2012) found a great homogeneity in the mitochondrial gene COI 5’ from Germany to Croatia, but noted a divergence of 2.4% from a specimen from Greece. Recent research on the lepidopteran fauna of Calabria, the southernmost region of peninsular Italy, led to the discovery of new populations at a first glance belonging to *Nothocasis sertata*. Morphological and genetic studies confirmed the presence of an undescribed species which is closely related but clearly distinguishable from *N. sertata* in Calabria.

Material and methods

Material of the type series was collected by using various types of light traps in a few localities of the Sila and Pollino Massifs (see below, under material examined). We used a Rothamsted light trap with a 200W incandescence lamp for moth collecting in the type locality of Vivaio Sbanditi, Sila Massif, whilst in the other localities we used Head traps equipped with 12W UV LEDs. Examined material is stored in the following collections: Zoologische Staatssammlung München (SNSB-ZSM), Germany; Collection of the Unità di Ricerca per la Selvicoltura in Ambiente Mediterraneo (Crea-Sam), Italy.

Species delimitation was based on the combined study of adults (coloration, pattern, external morphology) and morphology of genitalia, as well as genetics. Genitalia extraction and slide mounting were performed following standard methodology (Parenti 2000). Terminology of genitalia traits follows Hausmann (2001). Genetic analyses were carried out on the mitochondrial cytochrome c oxidase I (COI) gene (658 base pairs), the standard DNA fragment used in animals to help taxonomists in species identification and delimitation (Hajibabaei et al. 2006, Hausmann et al. 2013; Miller et al. 2016). One leg was detached from specimens and submitted to standard protocols for DNA barcoding analysis (Ivanova et al. 2006; CCDB, 2015), carried out in the Canadian Centre for DNA Barcoding, Guelph, Ontario, Canada. LepF1 and LepR1 were the primers used for PCR and sequencing (Hajibabaei et al. 2006). Inter- and intra-specific genetic variations were calculated using the Kimura 2-parameter model (Kimura 1980) and the neighbour-joining algorithm (Saitou & Nei 1987), as implemented in BOLD (http://www.boldsystems.org/). All recovered sequences of the new species were 658 bp long, and were assigned to the Barcode Index Number (BIN) BOLD:AAM2755. Sequences and metadata are accessible for public in the BOLD-dataset DS-NOTHOCAS. Data about analyzed sequences are summarized in Table 1.

Results

Nothocasis rosariae Scalercio, Infusino & Hausmann, new species

Description. External characters (Figs. 1–4): Wingspan male 22-28 mm (n=17), 26 mm for the holotype (Fig. 1), wingspan female 23–29 mm (n=21). Wings light grey. Transverse lines of forewings parallel to distal margin (termen) of the wing, black or dark grey, bordered by brownish scales especially along basal, medial and post-medial lines. Terminal line dissolved to a row of paired black dots, one above and the other below distal terminations of veins. Discal spots black, surrounded by a pale ring. Forewing pattern, especially in male, not well contrasted and defined due to irroration by dark grey scales. Fringe concolorous with wings, sometimes darker at vein terminations. Hindwing without transverse lines, with terminal area slightly darker. Discal spots black. Underside of wings as upperside, but paler. Frons, thorax and abdomen concolorous with wings. Antennae ciliate-setose in males and scarcely ciliate in females, flagellum dorsally chequered black and white. Hindtibia of both sexes with one pair of distal spurs, male hindtibia with a pencil longer than the tibia. Tympanal organs medium-sized.

Female genitalia (Figs. 13–16): Papillae anales wide, setose. Apophyses posteriores long, slightly curved at 1/5 of their length. Apophyses anteriores more robust, 1/4 length of apophyses posteriores. Antrum well sclerotized, cup-shaped, showing in mounted genitalia a width/length ratio 3.3–3.6 (n=3) and bidimensional shape with apices pointed and widely projecting laterally. Ductus bursae short, not sclerotized. Ductus seminalis projecting from short membranous appendix bursae between ductus bursae and corpus bursae. Posterior part of corpus bursae narrowly cylindrical, weakly sclerotized, slightly granulated or with sparse microspines. Anterior part of corpus bursae elliptic, membranous, without signum.

Variation (Fig. 4). Forewing pattern more variable than hindwing pattern. Forewing sometimes with two anastomoses of medial and postmedial lines on veins CuA1 and CuA2. Forewing ground colour varying from dark grey to light grey. Some specimens with a dark grey medial fascia, bordered by brownish antemedial and postmedial fasciae. Such variants have been observed throughout the entire flight season and in both sexes, but only in the populations of Pollino Massif, while the wing pattern in the populations of the Sila Massif were much more homogeneous.

Genetic data (Fig. 17). Genetically heterogeneous in the distribution area (Italy and Greece), mean intraspecific variation 0.65%, maximum variation 1.93% (n=11). Nearest species: Nothocasis sertata (minimum pairwise distance 2.25%). Within the known range of N. rosariae it is possible to identify three genetic lineages consistent with different geographic areas. Populations of peninsular Italy are grouped in two different clusters at a minimum pairwise distance of 0.50% (=three basepairs). One cluster refers to specimens from the Pollino Massif (maximum intra-populational variation 0.23%) and the other to specimens from the Sila Massif (maximum intra-populational variation 0%). The single specimen from Epirus, Greece, diverges by 1.77% (minimum pairwise distance 0.50%).
distance) from the Italian populations, by 2.85% from *N. sertata*. So far, no other specimens of *Nothocasis* have been sequenced to the full barcode fragment (658bp), but a short fragment (307bp) of *Nothocasis polystictaria* from Nepal at a genetic distance of 14.1% (Kimura 2, complete deletion) from the European species seems to question its taxonomic position within the genus. The same applies for two short sequences (164bp) of the holotypes of *N. posteropuncta* and *N. hyberniata*, both described from Nepal and both at genetic distances of 10.8%.

FIGURE 4. Intraspecific variation of adult habitus in *Nothocasis rosariae* sp. n.. a male, 24.viii.2015, Timpone Magara, Saracena, Calabria, Italy (Coll. Crea-Sam), paratype. b male, 24.viii.2015, Timpone Magara, Saracena, Calabria, Italy (Coll. Crea-Sam), paratype. c female, 18.xi.2015, Serrapaolo, Saracena, Calabria, Italy (Coll. Crea-Sam), paratype. d female, 13.x.2014, Vivaio Sbanditi, Longobucco, Calabria, Italy (Coll. Crea-Sam), paratype. e male, 14.x.2015, Timpone Magara, Saracena, Calabria, Italy (Coll. Crea-Sam), paratype. f male, 24.viii.2015, Serrapaolo, Saracena, Calabria, Italy (Coll. Crea-Sam), paratype. g female, 24.viii.2015, Timpone Magara, Saracena, Calabria, Italy (Coll. Crea-Sam), paratype. h female, 14.x.2015, Timpone Magara, Saracena, Calabria, Italy (Coll. Crea-Sam), paratype. i male, 14.x.2015, Timpone Magara, Saracena, Calabria, Italy (Coll. Crea-Sam), paratype. j male, 14.x.2015, Serrapaolo, Saracena, Calabria, Italy (Coll. Crea-Sam), paratype. k female, 14.x.2015, Timpone Magara, Saracena, Calabria, Italy (Coll. Crea-Sam), paratype. l 14.X.2015, Bruscata, Saracena, Calabria, Italy (Coll. Crea-Sam), paratype.

Similar species. The new species can be confused with small individuals of *Epirrita* which fly synchronously in the same habitats, and with *Trichopteryx carpinata* (however, with an early spring phenology), both easily distinguishable by dissection of genitalia. Differing from *Nothocasis sertata* in wing pattern (Figs. 2–3), and morphology of genitalia (males: Figs. 5–6, 7–12; females: Figs. 13, 15–16). Most important diagnostic features are:
FIGURES 5–6. Male genitalia (aedeagus separated) of *Nothocasis sertata* (Hübner) and *Nothocasis rosariae* sp. n., 5 *N. sertata*, prep. number ZSM 3, Stefano Scalercio, 16.ix.1922, Northeim, Hannover, Germany (Coll. ZSM), 5a: genitalia; 5b: aedeagus. 6 *N. rosariae* sp. n., prep. number CREASAM 50, 13.x.2014, Vivaio Sbanditi, Longobucco, Italy (Coll. Crea-Sam), 6a: genitalia; 6b: aedeagus.
- forewing pattern more diffuse than in *N. sertata*, brown scales bordering medial and postmedial lines not arranged in well-defined fasciae;
- uncus tubular, with constant width from basis to tip and inversely T-shaped in *N. rosariae* sp. n., uncus wider at basis and inversely Y-shaped in *N. sertata*;
- harpe distally with two pointed tips in *N. rosariae* sp. n., bilobous in *N. sertata*;
- width/length ratio of antrum 3.3–3.6 (n=3), with a bidimensional shape in mounted genitalia laterally pointed and widely projecting in *N. rosariae* sp. n., 2.2–2.5 (n=3), with a less diverging and less pointed shape in *N. sertata*;
- posterior part of corpus bursae narrow and weakly sclerotized, cylindrical in *N. rosariae* sp. n., weakly sclerotized on the entire surface of ductus bursae in *N. sertata*.

Phenology. During field research we collected 128 individuals belonging to *Nothocasis rosariae*, most of which not designed as paratypes because not mounted with pins. The species starts to fly in late August when few individuals (n=8) have been collected in the beech forest of the Pollino National Park. In September the abundance slightly increased (n=16), reaching its peak in October (n=100). Last individuals were collected as late as mid-November (n=5). Males were much more abundant at the beginning of the flight season, while in November only females were collected.
NOTHOCASIS ROSARIAE SP. N.

Biology: Unknown. Adults were most abundantly collected within pure Fagus sylvatica forests. Without further evidence, we can only hypothesize that larvae most likely feed on beech rather than on Acer pseudoplatanus, as its European sibling species Nothocasis sertata (Hausmann & Viidalepp 2012).

Distribution (Fig. 18). The type specimens have been collected in two localities of the Sila Massif and in three localities of the Pollino Massif (Calabria, Italy), where other ten specimens were collected in two different localities. More abundant populations were found in the Pollino Massif (Calabria, Italy) (n=118). The northernmost population was found on the Mount Sirino (n=1) (Basilicata, Italy). One specimen has been collected in the Epirus (Greece). To date it appears to be a trans-Ionian species, but further investigation is needed to delimitate the range of this species in Italy and in the Balkan countries. One record from Tuscany was confirmed as Nothocasis sertata through dissection, another from Croatia at the border to Bosnia through DNA barcoding (Iva Mihoci, pers. comm.).
FIGURES 15–16. Details of antrum and adjacent structures. 15a *Nothocasis sertata* (Hübner), prep. number ZSM 6, Stefano Scalercio, 21.ix.1924, Northeim, Hannover, Germany (Coll. ZSM). 15b *N. sertata*, prep. number ZSM 4, Stefano Scalercio, 14.ix.1924, Urwald, Saxony, Germany (Coll. ZSM). 16a *Nothocasis rosariae* sp. n., prep. number CREASAM 60, 18.xi.2015, Timpone Magara, Saracena, Italy (Coll. Crea-Sam). 16b *N. rosariae* sp. n., prep. number CREASAM 59, 05.x.2015, Montagna Grande, San Giovanni in Fiore, Italy (Coll. Crea-Sam).

Habitat (Figs. 19–20). Forested habitats, especially in beech forests (*Fagus sylvatica*) but found also in Calabrian black pine forests (*Pinus nigra laricio*). Young forests having a closed canopy seems to be preferred to old forests having discontinuity in the canopy cover. Vertical distribution from 520m up to 1475m.

Derivatio nominis. The species is dedicated to Rosaria Calcagnile, the mother of the first author.

Discussion and conclusions

The discovery of a new species of *Nothocasis, N. rosariae* sp. n., in southern Europe questions the correct species identification of known isolated populations of *Nothocasis sertata* in that geographic area. Future studies will...
likely enlarge the range of known distribution for *N. rosariae* sp. n. in the Balkan countries and Apennine mountains. In northern Italy *Nothocasis sertata* was recorded for several localities, but shows a much more scattered distribution along the Apennines (Parenzan & Porcelli 2006), where it was reported for Emilia (Turati 1919; Flamigni & Bastia 2006), Romagna (Zangheri 1965; Fiumi & Camporesi 1988), Tuscany (Marini & Trentini 1984; Dapporto *et al.* 2005), Umbria (Prola & Racheli 1979), Marche (Teobaldelli 1976, 1978, 2009), Abruzzo (Sciarretta & Zahm 2002). Alpine populations of *Nothocasis* need to be attributed to *N. sertata* as confirmed by barcoding analysis (Fig. 17), and also for Tuscany, the dissection of a male specimen could confirm its identity as *N. sertata*.

FIGURE 17. Neighbour joining tree (Kimura 2-parameter distance model for COI-5P marker) for 23 European *Nothocasis* specimens. Terminals with specimen ID-number and geography from BOLD

In southern Italy, *Nothocasis sertata* was rarely cited, being recorded for only two localities, one in Campania and one in Basilicata (Parenzan & Hausmann 1992). Recently, in southernmost Basilicata one single specimen could be attributed to *N. rosariae* sp. n. through DNA barcoding, but little is known about the Apennine populations north of Basilicata, leaving open the question about the exact position of the boundary between these species.

Despite a comparatively large genetic variation between Italian and Greek populations, the morphology of adults and male genitalia of specimens collected in these countries perfectly matched each other confirming their conspecific status. The largest intra-populational genetic diversity was found in specimens from the Pollino Massif, where we found five different haplotypes (*n*=5) in a radius of 2.5km. In contrast to that finding, a great genetic homogeneity was observed in the Sila Massif where only one haplotype was found (*n*=4). This pattern could be the consequence of a recent colonization of the Sila Massif by this species leading to the observed homogeneity (bottleneck/founder effect).
<table>
<thead>
<tr>
<th>Species</th>
<th>Country</th>
<th>Region</th>
<th>Area</th>
<th>Specimen ID</th>
<th>Sequence page</th>
<th>GenBank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notocasis rosariae</td>
<td>Italy</td>
<td>Calabria</td>
<td>Sila Massif</td>
<td>LEP-SS-00162</td>
<td>BIBSA 542-15</td>
<td>KU497383</td>
</tr>
<tr>
<td>Notocasis rosariae</td>
<td>Italy</td>
<td>Calabria</td>
<td>Sila Massif</td>
<td>LEP-SS-00163</td>
<td>BIBSA 543-15</td>
<td>KU497388</td>
</tr>
<tr>
<td>Notocasis rosariae</td>
<td>Italy</td>
<td>Calabria</td>
<td>Sila Massif</td>
<td>LEP-SS-00294</td>
<td>BIBSA 784-15</td>
<td>KU497384</td>
</tr>
<tr>
<td>Notocasis rosariae</td>
<td>Italy</td>
<td>Calabria</td>
<td>Sila Massif</td>
<td>LEP-SS-00295</td>
<td>BIBSA 785-15</td>
<td>KU497381</td>
</tr>
<tr>
<td>Notocasis rosariae</td>
<td>Italy</td>
<td>Calabria</td>
<td>Pollino Massif</td>
<td>LEP-SS-00360</td>
<td>BIBSA 850-15</td>
<td>KU497385</td>
</tr>
<tr>
<td>Notocasis rosariae</td>
<td>Italy</td>
<td>Calabria</td>
<td>Pollino Massif</td>
<td>LEP-SS-00361</td>
<td>BIBSA 851-15</td>
<td>KU497386</td>
</tr>
<tr>
<td>Notocasis rosariae</td>
<td>Italy</td>
<td>Calabria</td>
<td>Pollino Massif</td>
<td>LEP-SS-00362</td>
<td>BIBSA 852-15</td>
<td>KU497387</td>
</tr>
<tr>
<td>Notocasis rosariae</td>
<td>Italy</td>
<td>Calabria</td>
<td>Pollino Massif</td>
<td>LEP-SS-00363</td>
<td>BIBSA 853-15</td>
<td>KU497380</td>
</tr>
<tr>
<td>Notocasis rosariae</td>
<td>Italy</td>
<td>Calabria</td>
<td>Pollino Massif</td>
<td>LEP-SS-00364</td>
<td>BIBSA 854-15</td>
<td>KU497382</td>
</tr>
<tr>
<td>Notocasis rosariae</td>
<td>Italy</td>
<td>Basilicata</td>
<td>Sirino Massif</td>
<td>BC ZSM Lep 60930</td>
<td>GWOTF364-12</td>
<td>-</td>
</tr>
<tr>
<td>Notocasis rosariae</td>
<td>Greece</td>
<td>Epinus</td>
<td>N Konitsa</td>
<td>BC ZSM Lep 35649</td>
<td>GWOSA638-10</td>
<td>-</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Germany</td>
<td>Bavaria</td>
<td>Fuerstenfeldbruck</td>
<td>BC ZSM Lep 01221</td>
<td>GWORB845-07</td>
<td>HQ601437</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Germany</td>
<td>Bavaria</td>
<td>Traunstein</td>
<td>BC ZSM Lep 01570</td>
<td>GWORC1570-08</td>
<td>HQ601436</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Germany</td>
<td>Bavaria</td>
<td>Traunstein</td>
<td>BC ZSM Lep 01571</td>
<td>GWORC1571-08</td>
<td>HQ601438</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Germany</td>
<td>Bavaria</td>
<td>Dietramszell</td>
<td>BC ZSM Lep 21814</td>
<td>GWORK484-09</td>
<td>GU655902</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Germany</td>
<td>Bavaria</td>
<td>Dietramszell</td>
<td>BC ZSM Lep 22077</td>
<td>GWORL365-09</td>
<td>GU686917</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Italy</td>
<td>Friuli-Venezia Giulia</td>
<td>Udine</td>
<td>TLMF Lep 00202</td>
<td>PHLAA162-09</td>
<td>GU689141</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Germany</td>
<td>Bavaria</td>
<td>Berchtsgadener Land</td>
<td>BC ZSM Lep 24231</td>
<td>GWORM182-09</td>
<td>HM903324</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Germany</td>
<td>Bavaria</td>
<td>Regen</td>
<td>BC ZSM Lep 37461</td>
<td>FBLMW360-10</td>
<td>HQ563591</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Croatia</td>
<td>Licko-senjska, Lika</td>
<td>Mt. Licka Pljesiva L2</td>
<td>RCIM 0141</td>
<td>GWOSI141-10</td>
<td>-</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Austria</td>
<td>Vorarlberg</td>
<td>Sonntag, Buchboden</td>
<td>TLMF Lep 06173</td>
<td>PHLA718-11</td>
<td>KP253253</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Austria</td>
<td>Eastern Tyrol</td>
<td>Lavant, Kienbichl</td>
<td>TLMF Lep 18951</td>
<td>LEATJ1091-15</td>
<td>-</td>
</tr>
<tr>
<td>Notocasis serrata</td>
<td>Austria</td>
<td>Carinthia</td>
<td>Motschula</td>
<td>KLM Lep 03426</td>
<td>ABOLB766-15</td>
<td>-</td>
</tr>
</tbody>
</table>
FIGURE 18. Distribution areas of *Nothocasis sertata* (Hübner) and *Nothocasis rosariae* sp. n. (from Hausmann & Viidalepp 2012, modified).

Acknowledgements

We are deeply indebted with Carlo Di Marco, Enzo Calabrese, Gino Scarpelli, Massimo and Ettore Salerno for their field help and technical support. We thank Peter Huemer (Innsbruck), Christian Wieser (Klagenfurt) and Iva Mihoci (Zagreb) for contributing DNA barcodes of *N. sertata*, and Pietro Brandmayr (University of Calabria, Rende) for the access granted to the laboratory of microscopy. We also thank the Pollino National Park and the Sila National Park authorities for releasing us the permits for collecting. The work was financially supported by the Project “Monitoraggio dei Lepidotteri Notturni attraverso l’utilizzo di trappole luminose tipo Rothamsted” funded by the Sila National Park authority, and by the Project "ALForLab" (PON03PE_00024_1) co-funded by the National Operational Programme for Research and Competitiveness (PON R&C) 2007-2013, through the European Regional Development Fund (ERDF) and national resource (Revolving Fund—Cohesion Action Plan (CAP) MIUR). Most central European sequences of *N. sertata* were generated in the framework of the projects “Barcoding Fauna Bavarica” (BFB; supported by the Bavarian Ministry of Science, Research and Art), and “German Barcode of Life” (GBOL, supported by the German Federal Ministry of Education and Research). We are especially grateful to Paul Hebert, Sujeevan Ratnasingham, and the rest of the staff of the Biodiversity Institute of Ontario, University of Guelph, who helped in generating sequences and developing sequence analysis tools for the International Barcode of Life project, with support from Genome Canada. We also thank Claudio Flamigni (Bologna) for his comments on the manuscript.
FIGURES 19–20. Habitat of *Nothocasis rosariae* sp. n. 19 Vivaio Sbanditi, *locus typicus*, 1350m, mixed forest, Longobucco, Sila National Park, Italy. 20 Timpone Magara, 1460m, beech forest, Saracena, Pollino National Park, Italy.
References

http://dx.doi.org/10.5962/bhl.title.7828

http://dx.doi.org/10.1073/pnas.0510466103

http://dx.doi.org/10.1007/978-1-4757-4110-1_1

http://dx.doi.org/10.1371/journal.pone.0084518

http://dx.doi.org/10.1111/j.1471-8286.2006.01428.x

http://dx.doi.org/10.1007/BF01731581

