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Abstract

Fleas (Siphonaptera) are medically important blood-feeding 
insects responsible for spreading pathogens such as plague, 
murine typhus, and myxomatosis. The peculiar morphology 
of fleas resulting from their specialised ectoparasitic 
lifestyle has meant that the phylogenetic position of this 
diverse and medically important group has remained one of 
the most persistent problems in insect evolution. Here we 
test competing hypotheses on the contentious evolutionary 
relationships of fleas and antliophoran insects using the 
largest molecular dataset available to date consisting of 
over 1,400 protein-coding genes, and a smaller mitogenome 
and Sanger sequence alignment of 16 genes. By removing 
ambiguously aligned sequence regions and using site-
heterogeneous models, we consistently recover fleas nested 
within scorpionflies (Mecoptera) as sister to the relictual 
southern hemisphere family Nannochoristidae. Topology 
tests accounting for compositional heterogeneity strongly 
favour the proposed topology over previous hypotheses of 
antliophoran relationships. This clade is diagnosed by shared 
morphological characters of the head and sperm pump. 
Fleas may no longer be regarded as a separate insect order 
and we propose that Siphonaptera should be treated as an 
infraorder within Mecoptera, reducing the number of extant 
holometabolan insect orders to ten.

Keywords: Antliophora, Siphonaptera, Mecoptera, 
phylogenomics, evolution, phylogenetic position

Introduction

Fleas are obligate parasites, feeding on the blood of a 
variety of birds and mammals, and exhibit one of the most 

bizarre bodyplans and modes of life among insects (Lewis, 
1998). Flea monophyly is strongly supported by siphonate 
mouthparts formed from the laciniae and labrum, strongly 
reduced eyes, laterally compressed wingless body, 
and hind legs adapted for jumping (Beutel et al., 2013; 
Medvedev, 2017). However, the phylogenetic position 
of fleas among insects has proven to be one of the most 
persistent problems in insect evolution and systematics 
(Beutel et al., 2017; Hennig, 1969; Kjer et al., 2016). 
The 19th century idea that fleas might be close relatives 
of beetles (Börner, 1904) based on superficial similarities 
(Hennig, 1969) was gradually replaced by a mid-20th 
century consensus that fleas share features in common 
with scorpionflies (Mecoptera) and true flies (Diptera), 
together constituting the group Antliophora (Kristensen, 
1975; Wille, 1960). Affinity with scorpionflies was 
first proposed in the 1930s (Tillyard, 1935), supported 
by larval mouthpart characters and the structure of the 
proventriculus (Hinton, 1958; Richards, 1965; Ross, 
1965), while a closer relationship with flies (Boudreaux, 
1979) was argued based on the shared absence of thoracic 
legs in larvae and one-segmented labial palpi (Byers, 
1996). The advent of molecular phylogenetics and 
phylogenomics has not resolved the systematic position of 
fleas either (Misof et al., 2014), with studies consistently 
recovering fleas either as a sister group to monophyletic 
scorpionflies (McKenna & Farrell, 2010; Misof et al., 
2014; Peters et al., 2014; Wiegmann et al., 2009) or 
nested within scorpionflies either as sister to Boreidae 
(snow scorpionflies) or Nannochoristidae (Chalwatzis et 
al., 1996; Whiting, 2002a; Whiting et al., 1997, 2003). 
These competing hypotheses imply dramatically different 
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scenarios for the evolution of parasitism and hematophagy 
in fleas, as well as for the classification of insects.
 Resolution of the ‘Siphonaptera problem’ requires 
a quantitative comparison of competing hypotheses of 
antliophoran relationships and an understanding of why 
past analyses have arrived at divergent results. Here we 
use the largest currently available molecular dataset for 
Antliophora consisting of over 1,400 protein-coding genes 
(Misof et al., 2014) and methods to overcome common 
sources of phylogenomic error to elucidate the systematic 
position of fleas.

Material and methods

Transcriptome dataset
We used the comprehensive insect transcriptome dataset 
of Misof et al. (2014), pruned to include only Antliophora, 
with Lepidoptera and Trichoptera as outgroups. With 
1,478 protein-coding genes (PCGs) this represents the 
most extensive dataset for Antliophora available to date. 
Sampling among scorpionflies includes representatives 
of all three major groups recognised based on 
morphology: Neomecoptera (Boreidae), Nannomecoptera 
(Nannochoristidae), and Pistillifera (Bittacidae and 
Panorpidae). We focused on analysis of amino acids 
(AA) which are more suitable for reconstructing ancient 
relationships (Inagaki & Roger, 2006; Rota-Stabelli et al., 
2013; Schwentner et al., 2017).
 Since phylogenetic noise resulting from errors 
including poor alignment and incorrect identification of 
orthologs is a major confounding factor in phylogenomics 
(Philippe et al., 2011), we removed ambiguously aligned 
sequence regions using BMGE with BLoSuM95 and 
three different -h settings to produce datasets with varying 
degrees of noise in descending order: -h 0.5, -h 0.4, and -h 
0.3 (Criscuolo & Gribaldo, 2010). Trimming resulted in a 
reduction of the original dataset by 72.6% (-h 0.5, 163,035 
AA sites), 83.1% (-h 0.4, 100,430 AA sites), and 92.9% 
(-h 0.3, 42,005 AA sites). Data occupancy increased from 
59.8% to 83.0% (-h 0.5), 82.9% (-h 0.4), and 90.8% (-h 
0.3).
 The application of poorly fitting models to analyse 
the data can yield strongly supported but erroneous 
relationships (Feuda et al., 2017; Pisani et al., 2015) 
resulting from various types of phylogenomic error (e.g., 
long-branch attraction) rather than phylogenetic signal 
(Feuda et al., 2017; Lartillot et al., 2007; Simion et al., 
2017). We therefore compared the fit of compositionally 
site-heterogeneous (C10, C20) and site-homogeneous 
(WAG, LG) models to our antliophoran transcriptome 
dataset using ModelFinder (Kalyaanamoorthy et al., 2017) 
implemented in IQ-Tree 1.6.3 (Nguyen et al., 2015).

Mitogenome and Sanger sequence dataset
To test the effect of gene sampling, we mined GenBank 
for publicly available sequences of mitochondrial PCGs as 
well as the nuclear genes 18S, 28S, and EF-1 (Table A1). 
PCGs were aligned by codon in MEGA X 10.0.5 with the 
‘MuSCLE’ tool (Kumar et al., 2018) and ribosomal genes 
were aligned using the Q-INS-i algorithm in MAFFT on 
XSEDE 7.402 (Katoh & Standley, 2013) via the CIPRES 
Science Gateway (Miller et al., 2010). Three versions of 
the mitogenome and Sanger-sequence dataset were made: 
amino acids only (AA, i.e., excluding rDNA sequences), 
nucleotides (PCG123 + rDNA), and nucleotides with the 
third codon position excluded to reduce data heterogeneity 
(PCG12) (Rota-Stabelli et al., 2013). The sequences were 
concatenated in SequenceMatrix 1.8 (vaidya et al., 2011). 
In total, 25 flea and scorpionfly species were sampled 
belonging to four and nine families, respectively, with 
two dipterans as outgroups. 

Phylogenomic reconstruction
Phylogenomic analyses of the transcriptome dataset were 
conducted using the compositionally site-heterogeneous 
empirical mixture model C20+R4 implemented in IQ-
Tree, which fitted the transcriptome dataset significantly 
better than the remaining tested models in ModelFinder 
(Table A2). We also tested the effect of using the LG4X+R 
model implemented in IQ-Tree, and the compositionally 
site-heterogeneous infinite mixture model CAT-GTR+G4 
in PhyloBayes MPI 1.7 (Lartillot et al., 2009). For the 
latter, two independent Markov chain Monte Carlo 
(MCMC) chains were run until convergence (maxdiff 
< 0.3) and the bpcomp program was used to generate 
output of the largest (maxdiff) and mean (meandiff) 
discrepancies observed across all bipartitions. Support 
values in IQ-Tree were generated using 1,000 ultra-fast 
bootstraps, while support values in PhyloBayes runs are 
shown as Bayesian posterior probabilities (BPP). The 
mitogenome and Sanger-sequence datasets were analysed 
in PhyloBayes only (Marlétaz et al., 2019).

Evaluating alternative hypotheses of Siphonaptera 
placement
To evaluate support for the different hypotheses 
concerning the systematic position of fleas within 
Antliophora proposed by previous morphological 
and molecular analyses, we ran topology tests in IQ-
Tree using the C20+R4 model (Schrempf et al., 2020). 
Statistical analyses included the approximately unbiased 
(Au), weighted Kishino-Hasegawa (KH), and weighted 
Shimodaira-Hasegawa (SH) tests. We did not test early 
hypotheses that considered the twisted wing insects 
(Strepsiptera) as members of Antliophora (Whiting et al., 
1997) since the position of this enigmatic order is now 
well supported as sister to beetles (Misof et al., 2014; 
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Niehuis et al., 2012). We also disregarded historical 
hypotheses of flea placement within Diptera (Byers, 
1996; Rohdendorf, 1957), since these were formulated in 
a non-cladistic framework and have not been supported in 
formal phylogenetic analyses. 

Result 

Transcriptome analyses using the LG4X+R model as 
well as the site-heterogeneous models C20+R4 and 
CAT-GTR+G4 yielded well-resolved topologies with 
an identical position of Siphonaptera (Figs 1, 2). The 
selection of data filtering methods had no impact on the 
position of fleas. In line with previous phylogenomic 
analyses, Diptera is recovered as monophyletic (Misof et 
al., 2014; Wiegmann et al., 2011). However, scorpionflies 
are recovered as paraphyletic. The snow scorpionfly 
Boreus hyemalis is supported as sister to the remaining 
scorpionflies, while members of families Bittacidae 
and Panorpidae form a clade. The enigmatic southern 
hemisphere scorpionfly family Nannochoristidae is 
supported as sister to fleas.
 The position and sister group of fleas was identical 

in all transcriptome analyses. Within the Mecoptera + 
Siphonaptera clade, the transcriptome analyses differed 
on a single node only. The C20+R4 analysis of the -h 0.3 
dataset recovered Boreus as sister to Panorpa + Bittacus 
instead of being sister to the remaining mecopterans and 
fleas as in the other analyses. This node is however poorly 
supported (bootstrap value = 63), and so we regard Boreus 
as the earliest diverging mecopterans.
 In contrast to the transcriptome runs, the mitogenome 
and Sanger sequence analyses recovered Boreidae or 
Eomeropidae as sister to fleas with varying support in 
different datasets (Fig. A1). our results thus highlight the 
importance of extensive gene sampling for recovering the 
position of fleas.
 Topology tests accounting for compositional 
heterogeneity consistently supported the transcriptome 
tree with fleas nested within scorpionflies as sister to 
Nannochoristidae (PAu, PKH, PSH > 0.99) over the remaining 
hypotheses (Table 1), rejecting all remaining hypotheses 
with high significance. only Diptera + Siphonaptera 
nested within a paraphyletic Mecoptera was supported by 
the results of the Au test (PAu = 0.2105), but significantly 
rejected in the KH and SH tests (PKH, PSH < 0.0000).

FIGURE 1. Phylogeny of Antliophora based on the conserved (-h 0.4) transcriptome dataset analysed with the CAT-GTR+G4 
model. Mecoptera is paraphyletic with respect to Siphonaptera. All nodes are fully supported (BPP = 1). Coloured silhouettes 
displayed from top down are representatives of major antliophoran clades: Boreus (Neomecoptera), Panorpa (Pistillifera), 
Nannochorista (Nannomecoptera), Tunga (Siphonaptera), and Chrysomya (Diptera). 
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Discussion

Which is the sister group to fleas?
Mecopteran paraphyly with respect to fleas has been 
recovered in several early molecular studies of insects 
that used up to eight gene fragments (Kjer, 2004; Kjer 
et al., 2006; Wheeler et al., 2001; Whiting, 2002a, b; 
Whiting et al., 2003). Most subsequent studies sampling 
more genes failed to recover this relationship (Ishiwata et 
al., 2011; McKenna & Farrell, 2010; Peters et al., 2014; 
Wiegmann et al., 2009) including the transcriptome 
analysis of Misof et al. (2014) which supported fleas as 
sister to monophyletic Mecoptera. Misof et al. (2014) 
recovered fleas nested within scorpionflies as sister to 

Nannochoristidae, but only with low support in some ML 
analyses; they interpreted this result as a phylogenetic 
artifact. Nannochoristidae was also recovered as 
sister to fleas in a parsimony analysis of 18S rDNA 
(Whiting, 2002b), but rejected for failure to corroborate 
a contemporaneous study based on four genes (Whiting, 
2002a). We show that extensive sampling of genes 
combined with careful dataset curation resolves fleas 
as nested within scorpionflies with strong support. our 
results are congruent with mitogenome analyses of Song 
et al. (2016) who employed a site-heterogeneous model 
and found Siphonaptera nested within Mecoptera, albeit 
with low support for the sister group of fleas.

FIGURE 2. Phylogeny of Antliophora based on transcriptome datasets (A–C) with highly conserved sites (-h 0.3); (D–F) with 
conserved sites (-h 0.4); and (G–I) ‘standard noise-free dataset’ (-h 0.5). Models include the best fitting compositionally site-
heterogeneous C20+R4 implemented in IQ-Tree (A, D, I); compositionally site-heterogeneous CAT-GTR+G4 in PhyloBayes (B, 
E, H), and LG4X+R implemented in IQ-Tree (C, F, I). Asterisks (*) indicate fully supported nodes (BPP = 1; bootstrap values = 
100), numbers indicate nodes with lower than maximal support. outgroups are in grey, strict sense scorpionflies in green, fleas in 
orange, and true flies in blue.
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 Mecoptera are remarkably morphologically 
heterogeneous and, ever since Hennig (1969), 
systematists have noted that the monophyly of the order 
is difficult to support based on morphology alone. In 
particular, the northern hemisphere Boreidae, and the 
relictual southern hemisphere family Nannochoristidae 
have long troubled mecopteran systematists, with some 
workers even regarding the two as separate orders 
(Beutel & Friedrich, 2019; Hinton, 1981). The remaining 
mecopteran families, characterised by a highly specific 
sperm pump (Willmann, 2003), are strongly supported as 
a clade referred to as Pistillifera (Beutel & Pohl, 2006). In 
the 1960s, Ross (1965) noted that fleas and scorpionflies 
show remarkable similarities in the internal anatomy of 
the proventriculus. Fleas and scorpionflies also lack outer 
groups of microtubuli on the sperm flagellum, reduced 
extrinsic labral muscles, and also lack labial endite lobes 
(Michelsen, 1997). A close relationship of fleas and 
scorpionflies is also supported by Mesozoic fossils that 
combine characters of both groups (Huang et al., 2012).

 Both Boreidae and Nannochoristidae have been 
suggested as potential sister groups to Siphonaptera 
(Whiting, 2002b, 2003; Whiting et al., 2003). Snow 
scorpionflies are unusual among insects in that their 
adults with reduced wings emerge during the winter 
months and are active on snow (hence they are sometimes 
misleadingly referred to as ‘snow fleas’). They share 
with true fleas their ovariole structure and mouthparts, 
proventricular spines, and a similar process of resilin 
secretion (Biliński & Büning, 1998; Kristensen, 1999; 
Richards & Richards, 1969; Rothschild et al., 1975). 
Although in molecular studies the support for the snow 
scorpionfly-flea hypothesis has been mixed, Kristensen 
(1999) pointed out that a transition from wingless moss-
feeding snow scorpionflies to fleas that occupy vertebrate 
nests represents a convincing evolutionary scenario. 
Members of both groups are able to jump and their 
overall body plan is superficially similar (Whiting et al., 
2008). Nonetheless, our analyses indicate that a Boreidae 
+ Siphonaptera clade is only recovered when gene 

TABLE 1. Results of approximately unbiased (Au), weighted Kishino-Hasegawa (KH), and weighted Shimodaira-Hasegawa 
(SH) tests comparing historically proposed hypotheses of flea placement. 𝑃-value > 0.05: topology not rejected; 𝑃-value < 
0.05: topology rejected significantly (*); 𝑃-value = 0: topology rejected with high significance.

Topology Refs. PAU PKH PSH

((Boreidae (Pistillifera (Nannochoristidae, Siphonaptera))) Diptera)
fleas sister to Nannochoristidae, nested within scorpionflies

Whiting, 2002b 0.9988 0.9988 1.0000

((Pistillifera (Nannochoristidae (Boreidae, Siphonaptera))) Diptera)
fleas sister to Boreidae, next to Nannochoristidae, nested within 
scorpionflies

Whiting, 2002a; Whiting et al., 
2003

0.0000* 0.0000* 0.0001*

((Nannochoristidae (Pistillifera (Boreidae, Siphonaptera))) Diptera) 
fleas sister to Boreidae, nested within scorpionflies, with 
Nannochoristidae as earliest-diverging mecopteran family

Whiting, 2003; Whiting et al., 
2003

0.0009* 0.0000* 0.0000*

((Mecoptera, Siphonaptera) Diptera) 
fleas sister to scorpionflies

Dallai et al., 2003; Ishiwata et 
al., 2011; Kristensen, 1975, 1981; 
McKenna & Farrell, 2010; Misof 
et al., 2014; Peters et al., 2014; 
Wiegmann et al., 2009

0.0018* 0.0012* 0.0359*

((Diptera, Siphonaptera) Mecoptera) 
fleas sister to true flies

Beutel et al., 2011; Boudreaux, 
1979; Sharov, 1966; Zhao et al., 
2020

0.0000* 0.0000* 0.0000*

((Mecoptera, Diptera) Siphonaptera)
fleas sister to scorpionflies and flies

Kristensen, 1991 0.0021* 0.0000* 0.0000*

(((Diptera, Siphonaptera) Nannochoristidae), remaining Mecoptera) 
fleas sister to flies, within a paraphyletic Mecoptera

Wood & Borkent, 1989 0.2105 0.0000* 0.0000*
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sampling is limited, and the hypothesis was significantly 
rejected with the transcriptome dataset analysed in a site-
heterogeneous framework (Table 1). This indicates that 
the apterous body plans of snow scorpionflies and fleas 
were acquired independently; in the case of boreids, the 
absence of wings and ability to jump likely represent 
adaptations for locomotion in snow, while in fleas these 
adaptations result from their ectoparasitic lifestyle.
 Nannochoristids have, unusually for mecopterans, 
extremely slender predaceous aquatic larvae that feed on 
immature midges (Byers, 2009). The diet of the adults 
remains unknown, but probably consists of nectar or fruit 
juices (Palmer, 2010). our transcriptome analyses strongly 
supported a Nannochoristidae + Siphonaptera clade, in 
contrast to alternative hypotheses. Transcriptomic data 
are not currently available for all mecopteran families, 
nevertheless, nannochoristids share with fleas the 
morphology of their panoistic ovarioles (Simiczyjew, 
2002) and a set of characters associated with liquid 
feeding including: presence of a labral food channel; 
strongly developed postcerebral pumping apparatus; 
dorsally concave prelabium forming a trough for the 
paired mouthparts; exaggerated prementopalpal muscle; 
and stylet-like mandibles (Beutel et al., 2011). The shared 
presence of salivary channels on the laciniae and a sperm 
pump with a pistil chamber moved against a fixed pistil, 
are two possible synapomorphies of the nannochoristid-
siphonapteran clade (Beutel & Baum, 2008; Beutel & 
Friedrich, 2019). The two taxa also share characters of 
the endophallus and larval terminal appendages, but their 
homology is difficult to ascertain (Fraulob et al., 2012; 
Mickoleit, 2008). 

Fossil evidence and early evolution of fleas
While the fossil record of stem-fleas goes back to the 
Middle Jurassic (Huang et al., 2012, 2013), the earliest 
nannochoristid is known from the Permian (~272.3 Ma) 
(Pinto & de ornellas, 1978). Although Permian fossil 
fur preserved inside coprolites (Bajdek et al., 2016) 
suggests that the ecological niche inhabited by modern 
fleas existed by the late Palaeozoic, this does not imply a 
Permian origin of fleas. The extinct Jurassic–Cretaceous 
Mesozoic scorpionfly family Aneuretopsychidae has been 
proposed as a sister-group to fleas based on their similar 
mouthparts forming an annulated siphonate organ and 
reduced labial palps (Huang et al., 2013; but see Zhao et 
al., 2020). Thus, attempts to constrain the origin of fleas 
depend on discovering further Mesozoic scorpionflies 
and unravelling their relationships to fleas.
 A sister relationship between Nannochoristidae and 
Siphonaptera, as well as the reconstructed palaeobiology 
of Mesozoic siphonate mecopterans (Palmer, 2010; Zhao 
et al., 2020) implies that fleas originated from a liquid-
feeding ancestor that may have fed on plant secretions such 
as pollination drops from gymnosperms. The transition 

from feeding on plant secretions to blood-feeding is 
an evolutionary trajectory that occurred independently 
in at least one other hematophagous insect clade, the 
dipteran infraorder Culicomorpha. This would suggest 
that the co-option of mouthparts adapted for feeding on 
plant secretions to puncturing the cuticle of vertebrate 
hosts may represent an important step in the evolution of 
hematophagy and parasitism.

Taxonomic implications
Nested within Mecoptera, fleas no longer warrant the 
status of a distinct insect order. This situation is not 
without precedence in entomology; over the past two 
decades molecular analyses were able to verify earlier 
morphology-based hypotheses that the highly specialised 
termites and parasitic lice, both traditionally considered as 
separate orders, belong among cockroaches, and bark and 
book lice, respectively (Inward et al., 2007; Johnson et al., 
2018; yoshizawa & Johnson, 2010). Based on combined 
phylogenomic and morphological evidence, we propose 
demoting Siphonaptera to infraordinal level. Taxonomic 
stability is crucial for medically important groups such as 
fleas and this treatment retains the widely-recognised and 
well-defined flea families at their current taxonomic rank. 
our newly defined Mecoptera, including Siphonaptera, is 
equivalent to the Mecoptera s.l. of Kristensen (1999) and 
reduces the total number of extant holometabolan insect 
orders to ten. 
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Appendix: Additional material for molecular phylogenetic analyses of Antliophora.

FIGURE A1. Phylogeny of Antliophora based on the mitogenome and Sanger sequence dataset (A) amino acids only (AA); 
(B) nucleotides (PCG123 + rDNA); (C) nucleotides with the third codon position excluded (PCG12). The compositionally site-
heterogeneous CAT-GTR+G4 implemented in PhyloBayes was used to analyse all datasets. Asterisks (*) indicate fully supported 
nodes (BPP = 1; bootstrap values = 100), numbers indicate nodes with lower than maximal support. Strict sense scorpionflies are 
in green, fleas in orange, and true flies in blue.
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TABLE A1. GenBank accessions for all taxa sampled in the mitogenome and Sanger sequence dataset.

Taxon
GenBank accessions
mitochondrial nuclear
mtDNA COI COII 18S 28S EF-1

MECOPTERA
Apteropanorpidae
Apteropanorpa evansi AF423987 AF286284 AF423925 AF423816

Bittacidae
Apterobittacus apterus AF423988 AF423875 AF423926 AF423817
Bittacus sp. NC_044741 L10184 u65204 AF423818
Harpobittacus australis AF423990 AF423877 AF423928 AF423819
Hylobittacus apicalis MN344499 AF423994 AF423880 AF423931 AF423823

Boreidae
Boreus sp. HQ696579 X89487 Eu426882 AF423827
Caurinus dectes KF282717 AF286288 AF423937 AF423830

Choristidae
Chorista australis AF424007 AF286289 AF423943 AF423836
Taeniochorista pallida AF424008 AF423889 AF423944 AF423837

Eomeropidae
Notiothauma reedi MN345521

Meropeidae
Merope tuber AF436484 AF424017 AF286287 DQ202351 AF423847

Nannochoristidae
Nannochorista sp. HQ696580 KC177275 KC177635 AF423849

Panorpidae
Cerapanorpa sp. KX091860 Ky582989 KT943360
Dicerapanorpa sp. MK155218 MK175492 MK153733
Furcatopanorpa longihypovalva JN223455 Gu722407 MG775026
Leptopanorpa cingulata MH592629 MH592605 MH592553
Neopanorpa sp. KX091857 AF423903 AF423961 AF423856
Panorpa sp. NC_044742 X89493 AF423954 AF423851
Sinopanorpa tincta MK155248 MK175491 HM061595

Panorpodidae
Brachypanorpa sp. MN344636 EF050569 AF423912 AF423972 AF423867
Panorpodes sp. JN223473 EF050568 AF423913 AF423973 AF423869

“SIPHoNAPTERA”
Ceratophyllidae
Ceratophyllus sp. MG886872 Eu336130 KM891088 Eu336258

Hystrichopsyllidae
Hystrichopsylla sp. MH259703 KM891245 KM891029 Eu336297

Macropsyllidae
Macropsylla novaehollandiae Eu336001 Eu336087 Eu336195 Eu336300

Stephanocircidae
Craneopsylla sp. KM891000 AF424044 Eu336118 KM891122 KM890565

DIPTERA
Simuliidae
Simulium sp. KP793690 JQ793854 KP661560 AF003580

Tipulidae
Tipula sp. NC_030520 u65156 Ay456152
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TABLE A2. Fit of maximum likelihood (ML) models to the antliophoran transcriptome dataset analysed in ModelFinder. Plus 
signs denote the 95% confidence sets, while minus signs denote significant exclusion. Abbreviations: AIC, Akaike information 
criterion scores.

Model AIC

C20+R4         
C20+R5         
C20+R3         
C20+I+G        
C20+I          
C20+G          
C20            
C20+R2         
C20+F+R4       
C20+F+R5       
C20+F+R3       
C20+F+G        
C20+F          
C20+F+R2       
LG+F+R4        
LG+F+R5        
LG+F+R3        
LG+R4          
LG+R5          
LG+R3          
LG+F+I+G4      
LG+F+G4        
LG+I+G4        
LG+F+R2        
LG+G4          
LG+R2          
WAG+F+R4       
WAG+F+R5       
WAG+F+R3       
WAG+F+I+G4     
WAG+F+G4       
WAG+R5         
WAG+R4         
WAG+R6         
WAG+R3         
WAG+F+R2       
C10+F+R4       
C10+F+R5       
C10+F+R3       
WAG+I+G4
C10+R4         
C10+R5         
C10+R3         
WAG+G4
C10+F+G        
C10+F          
LG+F+I         
WAG+R2         
C10+I+G        
C10+I          
C10+F+R2       
LG+I           
C10+G          
C10            
C10+R2         
WAG+F+I        
WAG+I          
LG+F           
LG             
C20+F+I        
WAG+F          
C20+F+I+G      
WAG            
C10+F+I        
C10+F+I+G

1881039.9786 + 
1881041.5004 + 
1881341.5460 – 
1883302.4680 – 
1883302.6316 – 
1885395.1112 – 
1885395.1136 – 
1886603.2846 – 
1925365.7360 – 
1925367.0068 – 
1925654.5828 – 
1929531.5998 – 
1929562.6818 – 
1930796.4298 – 
1931726.8104 – 
1931729.0944 – 
1932387.6026 – 
1933688.1048 – 
1933689.7822 – 
1934330.5638 – 
1934537.6278 – 
1936271.7918 – 
1936490.8632 – 
1937959.1518 – 
1938246.8296 – 
1939858.3062 – 
1948032.1170 – 
1948033.5574 – 
1948503.1394 – 
1950257.9792 – 
1951847.5078 – 
1953041.5218 – 
1953077.7234 – 
1953044.8092 – 
1953486.4096 – 
1953346.7444 – 
1953243.2674 – 
1953244.5158 – 
1953532.1786 – 
1955224.5322 – 
1956316.4356 – 
1956317.8178 – 
1956599.4424 – 
1956840.4352 – 
1957502.3048 – 
1957518.9550 – 
1957990.6730 – 
1958371.2730 – 
1958434.7098 – 
1958435.4318 – 
1958823.8172 – 
1959769.9022 – 
1960575.1578 – 
1960575.1602 – 
1961876.6264 – 
1972363.8770 – 
1977462.8388 – 
2031678.4620 –
2034044.8160 –
2037681.7800 – 
2046704.0900 –
2048537.7400 –
2052574.4480 –
2062396.8000 –
2074148.8800 – 


