
PETER ZWICK
Schwarzer Stock 9, D-36110 Schiltz, Germany. E-mail: pleco-p.zwick@t-online.de

Table of contents

Abstract ... 452
Introduction .. 452
Methods and depositories ... 452
Taxonomy .. 453
Cygnocyphon ibex, n. gen. et n. sp. 453
Eximiocyphon excises, n. gen. et n. sp. 456
Tectocyphon, n. gen. .. 459
Key to males of Tectocyphon.. 460
Tectocyphon microphallus, n. sp. 460
Tectocyphon hispidus, n. sp. .. 463
Tectocyphon victoriae, n. sp. 463
Genus Eurycyphon Watts, 2011 465
Key to males of Eurycyphon ... 466
Eurycyphon fulvis Watts, 2011 466
Eurycyphon barringtoni, n. sp. 466
Eurycyphon thunguttii, n. sp. 468
Eurycyphon aquis Watts, 2011 468
Eurycyphon falcatus, n. sp. ... 468
Eurycyphon castaneus, n. sp. 471
Eurycyphon tricornis, n. sp. .. 471
Eurycyphon tomweirii, n. sp. 473
Eurycyphon perlatus, n. sp. ... 473
Eurycyphon undus, n. sp. ... 474
Eurycyphon sp. A ... 476

Leptocyphon, n. gen. .. 476
Key to the species of Leptocyphon 477
Leptocyphon fureadonga, n. sp. 477
Leptocyphon quadricornatus, n. sp. 480
Partial redescription of Pseudomicrocara orientalis Armstrong ... 481
Genus Nanocyphon Zwick, 2013 482
Nanocyphon australicus Zwick, 2013 482
Nanocyphon sp., cf. australicus Zwick, 2013 482
Nanocyphon tasmanicus, n. sp. 483
Paracyphon avicularis, n. gen., n. sp. 484
Genus Contacyphon de Gozis 486
Contacyphon foreipatus, n. sp. 486
Contacyphon putoni (Brisout de Barneville, 1863) 488
Acknowledgements .. 489
References ... 489

Accepted by M. Gimmel: 15 Jun. 2015; published: 7 Jul. 2015

http://dx.doi.org/10.11646/zootaxa.3981.4.1
http://zoobank.org/urn:lsid:zoobank.org:pub:EF71D83B-17B4-49CA-826E-D3A8E7979750

Copyright © 2015 Magnolia Press
Abstract

New monotypic genera proposed are: Cygnocyphon ibex n. gen., n. sp., Eximiocyphon excisus n. gen., n. sp., and Paracyphon avicularis n. gen., n. sp. Also proposed are the new genera Leptocyphon n. gen., with L. furcalonga n. sp. and L. quadricornutus n. sp., Tectocyphon n. gen., with T. microphallus n. sp., T. hirsutus n. sp., and T. victoriae n. sp. The diagnosis of genus Eurycyphon Watts is amended. E. fulvus Watts and E. aquilus Watts are partly redescribed. New species are: Eurycyphon barringtoni n. sp., E. castaneus n. sp., E. falcatus n. sp., E. parvus n. sp., E. perlatus n. sp., E. thunguttii n. sp., E. tomweiri n. sp., and E. tricornis n. sp. Species of Nanocyphon are discussed and N. tasmanicus n. sp. is described. Contacyphon forcipatus n. sp. is described and an apparently introduced population of the European Contacyphon putonii Gozis is reported from West Australia. For comparison with some of the new taxa the redescription of Pseudomicrocara orientalis Armstrong, type species of the genus, is supplemented.

Key words: taxonomy, description, new species, introduced species, neozoon

Introduction

The present paper deals with small adult marsh beetles, most of which were borrowed from Australian museums as suspect 'Cyphon'. They were a heterogenous assemblage, small size being the common denominator. The species-rich cosmopolitan genus Contacyphon (formerly known under the invalid name, Cyphon; see Zwick et al. 2013) is poorly represented in Australia. Most of the beetles in question actually belong to other genera dealt with in previous parts of this study (Zwick 2012, 2013a–d, 2014a, b, in press), or in new genera proposed in the present paper. New species of two known genera are also added.

Australia has a very rich and diverse marsh beetle fauna. Another manuscript presently under preparation will include further additions, and a key to the Australian scirtid genera.

Methods and depositaries

The study is based on dry material borrowed from museums listed below. As previously described (e.g., Zwick 2013c, 2014b) specimens on cards were relaxed, the detached abdomen was macerated in KOH-solution, and permanently mounted in Euparal on a transparent plastic slide placed on the specimen pin. WILD M5A and LEICA DMLS dissecting and compound microscopes, respectively, were employed, at magnifications up to 630x. A drawing mirror was used to prepare illustrations. Zerene Stacker software was applied to serial digital microphotographs made with a CANON EOS 350D.

The lists of material are copies of texts on specimen labels. Backslashes separate several labels on the same pin. Additional information is in square brackets. Geographic coordinates are presented in the original format, additions from Google Earth or Bonzle's Digital Atlas of Australia were converted to decimal format. The lists are arranged by Federal Australian States.

Descriptions of genus and species groups apply to all included species, unless differently stated. Species descriptions add only diagnostic details. Where possible, all components of the male terminalia are figured. Technical terms for male and female terminalia follow Nyholm (1969, 1972, 2002), with minor modifications explained in Zwick (2013c, 2014b). In the illustrations the caudal end of specimens is shown at the top. Measurements are in metric units. The eleven antennomeres include two true antennal segments (scape and pedicel, or antennomeres 1 and 2, respectively) and 9 secondary annulations of the flagellum (antennomeres 3–11).

Abbreviations in the descriptions are:

- BL body length, from front margin of pronotum to the apex of elytra in dorsal view, excluding the head which when at rest is largely concealed under the pronotum
- BW width of body at widest point
- HCW head capsule width across eyes
- PL, PW pronotum length along midline, maximal width of pronotum
- S, T sternite and tergite, respectively, plus ordinal number of segment; the first visible sternite is S3