A redescription of *Yoyetta landsboroughi* (Distant) and *Y. tristrigata* (Goding and Froggatt) (Hemiptera: Cicadidae) and description of four new related species

NATHAN J. EMERY¹, DAVID L. EMERY² & LINDSAY W. POPPLE³

¹School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006. E-mail: nathan.emery@sydney.edu.au

²Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales 2006. E-mail: david.emery@sydney.edu.au

³Biodiversity Assessment and Management, PO Box 1376, Cleveland, Queensland 4163. E-mail: lindsay.popple@uqconnect.edu.au

Table of contents

Abstract ... 301
Introduction .. 301
Material and methods ... 302
Systematics ... 303
Family Cicadidae Latrielle, 1802 303
Subfamily Cicadettinae Buckton, 1889 303
Tribe Cicadettini Buckton, 1889 303
Genus *Yoyetta* Moulds, 2012 303
Infrageneric relationships within *Yoyetta* 304
Preliminary key to the species of *Yoyetta* 304
Yoyetta landsboroughi (Distant 1882) 305
Yoyetta fluviatilis sp. nov. 312
Yoyetta nigromontana sp. nov. 319
Yoyetta tristrigata (Goding & Froggatt) 323
Yoyetta repetens sp. nov. 328
Yoyetta cumberlandi sp. nov. 334
Notes on the ecology and behaviour of *Yoyetta* cicadas 339
Acknowledgements .. 340
References ... 340

Abstract

This study provides redescriptions of two small cicada species, *Yoyetta landsboroughi* (Distant) and *Y. tristrigata* (Goding and Froggatt), from eastern Australia, based on a detailed morphological examination of available material. The status of *Y. toowoombae* (Distant) is re-examined and it is now formally recognised to be a junior synonym of *Y. landsboroughi*. Four new species of *Yoyetta* are described, also from eastern Australia. These are: *Y. cumberlandi* sp. nov., *Y. fluviatilis* sp. nov., *Y. nigromontana* sp. nov., and *Y. repetens* sp. nov.. Within each species (re)description, sections on distinguishing features, distribution, habitat and behaviour, and calling song structures are described and illustrated where appropriate.

Key words: Australia, behaviour, cicada, Cicadidae, distribution, habitat, morpho-taxonomy

Introduction

Each summer in Australia is marked by an emergence of acoustically-conspicuous insects: the cicadas. Of all cicada tribes recognised in Australia, Cicadettini is by far the most diverse, comprising the majority of smaller, thin-bodied species (Moulds, 2012). The genus *Yoyetta* Moulds was recently erected to accommodate nine Australian species, previously allocated to the genus *Cicadetta* Amyot. Examination of cicada specimen material housed in collections suggests that this genus may, once the species are fully described, be one of the most diverse...
(this is normally the long duration of silence in each phrase). The provision of closely-spaced and often repeated female cues in the male calling song is a particularly important behavioural adaptation for species that call actively in flight, such as *Y. aaeede*, *Y. denisoni*, *Y. nigrimontana sp. nov.* and *Y. tristrigata*. In this case, a female only has limited opportunity to respond as the male flies past. When calling, the males of these species can be seen meandering actively past and through the vegetation at varying heights, listening for the appropriately-timed response of a female that is normally residing lower in the vegetation. Males also sometimes call from a stationary perch. Cicadas from the related genus *Birrima* also exhibit this behaviour (Ewart, 1995). Other *Yoyetta* species call mostly whilst stationary but will also often produce the call when moving between singing stations or moving around branches. The often repeated and predictable female cues in the calls of *Yoyetta* species provides potential for males to be attracted to human observers by the production of appropriately-timed, simulated wing-flicks (typically by snapping fingers, flicking leaves, tongue-clicks or finger nail clicks). However, our observations indicate that males will generally abandon communication and desert the area on production of one or more poorly-timed or out-of-place responses. Most males of species that call mainly whilst stationary will call quite readily in captivity (except for *Y. landsboroughi*), whereas those of species that call mainly in flight are often reluctant to call in confined spaces.

In this paper, we nominally split the genus *Yoyetta* into three morphologically separable species groups. The species dealt with here are all in the most diverse group: the *Yoyetta tristrigata* species group. While no obvious characters allowed further division of this species group, some intuitive relationships can be identified by broad similarities and also differences in calling song structure, behaviour and also, subtly, in morphology. Notably, *Y. landsboroughi*, *Y. nigrimontana sp. nov.* and *Y. fluviatilis sp. nov.* are all closely similar in appearance and characterised by the production of distinct non-coalesced syllable sequences in their calling songs (see Figures 5, 8 and 12). The tropical species, *Y. tristrigata* is considered to be the most unique member of the group, with its tropical distribution, very distinct male genitalia and thoracic colouration and its repeated, single pulse calling song. The timbal structure of this species does, nevertheless, show some similarities to *Y. landsboroughi*, *Y. nigrimontana sp. nov.* and *Y. fluviatilis sp. nov.* in that the long ribs occupy much of the timbal membrane (Figure 2). These three species, along with *Y. tristrigata*, all show defined pulse structuring in the expanded time plots of their calling songs (Figures 5, 8, 12 and 15). The remaining examples, *Y. celis*, *Y. cumberlandi sp. nov.* and *Y. repetens sp. nov.* appear to be closely related to one another with only minor differences in morphology. In terms of calling song structure, *Y. celis* and *Y. repetens sp. nov.* in particular are almost identical, with the former species differing only by a higher overall dominant frequency plateau (approximately 8–14 kHz; L. W. Popple recording data, 2015). However, *Y. cumberlandi sp. nov.* differs quite remarkably in both calling song structure and repetition rate (see Figures 23 and 24; c.f. Figures 19 and 20). This is accompanied by only minor differences in timbal morphology (Figure 2), indicating that the differences in calling song structure between these species may be more behavioural than physiological, reflecting their co-occurrence in the Sydney region.

Acknowledgements

Specimens were collected under NPWS (NSW) collecting permits S11011 and SL100650 (NE, DE & LWP) and ACT permit LT2009371 (LWP). Tony Ewart generously provided access to his collection of recordings and Bryce Smith supplied additional distribution records from the field. Hans Duffels, Tony Ewart and an anonymous reviewer provided very helpful comments on the manuscript. Beth Mantle and Cate Lemann (ANIC), David Britton and Jacquie Reesei (AM), Christine Lambkin and Susan Wright (QM and UQIC) are thanked for providing access to specimens in their care.

References

http://dx.doi.org/10.1163/156853901753172674
FOUR NEW SPECIES OF YOYETTA CICADAS

http://dx.doi.org/10.1080/00222931508693683

http://dx.doi.org/10.11646/zootaxa.3730.1.1

http://dx.doi.org/10.2307/3495835

http://dx.doi.org/10.1017/S0952386903004680

http://dx.doi.org/10.3853/j.1031-8062.16.2002.1353