A revision of the genus Conicofrontia Hampson (Lepidoptera, Noctuidae, Apameini, Sesamiina), with description of a new species: new insights from morphological, ecological and molecular data

BRUNO LE RU1,2,8, CLAIRE CAPDEVIELLE-DULAC1, DESMOND CONLONG3, BEATRICE PALLANGYO4, JOHNNIE VAN DEN BERG1, GEORGE ONG’AMO6 & GAEL J. KERGOAT7

1IRD/CNRS, Laboratoire Evolution Génomes Spéciation, Avenue de la terrasse, BP1, 91198, Gif-sur-Yvette, France and Université Paris-Sud 11, 91405 Orsay, France. -Email: Claire.Capdevielle-Dulac@legs.cnrs-gif.fr (CC)
2Unité de Recherche IRD 072, African Insect Science for Food and Health (icipe), PO Box 30772, Nairobi, Kenya.
E-mail: bleru@icipe.org (BLR)
3South African Sugarcane Research Institute, Private Bag X02, Mount Edgecombe, 4300 South Africa and School of Biological and Conservation Sciences, University of KwaZulu-Natal, Private Bag X01 - Scottsville, Pietermaritzburg, Republic of South Africa.
E-mail: Des.Conlong@sugar.org.za (DC)
4Biocontrol Program, PO Box 30031, Kibaha, Tanzania. E-mail: beatricepallangyo@yahoo.com (BP)
5School of Environmental Sciences and Development, North West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, 2520, Republic of South Africa. E-mail: Johnnie.VanDenBerg@nwu.ac.za (JVD)
6School of Biological Science, College of Physical and Biological Sciences (Chiromo Campus), University of Nairobi, PO Box 30197, Nairobi, Kenya. Email: gongamo@uonbi.ac.ke (GO)
7INRA - UMR 1062 CBGP (INRA/IRD/Cirad, Montpellier SupAgro), 755 Avenue du campus Agropolis, 34998 Montferrier-sur-Lez, France. E-mail: kergoat@supagro.inra.fr (GJK)
8Corresponding author

Abstract

The aim of this study was to review the species of Conicofrontia Hampson, a small genus of noctuid stem borers (Noctuidae, Apameini) that is distributed in East and Southeastern Africa. We review the morphology of species in this group and provide new diagnoses and ecological data for five species. The following taxonomic changes are proposed: Hygrtosola dallolmoi (Berio, 1973) (= Conicofrontia dallolmoi Berio, 1973) comb. n. and Conicofrontia bipartita (Hampson, 1910) (= Phragmatiphila bipartita Hampson, 1910) comb. n., stat. rev. One new species is also described: C. lilomwa, sp. n. from Tanzania. Wing patterns as well as male and female genitalia of the five species are described and illustrated. Finally we carried out molecular phylogenetic and molecular species delimitation analyses on a multi-marker dataset of 31 specimens and 15 species, including the five mentioned species. The results of molecular analyses provide a clear support for the proposed taxonomical changes.

Key words: Conicofrontia, molecular phylogenetics, molecular species delimitation, Sesamiina, systematics, taxonomy

Introduction

African noctuid stem borers of the tropical subtribe Sesamiina consist of 13 genera encompassing about 200 species (Zilli et al. 2005; Toussaint et al. 2012), which are usually hardly distinguishable without a thorough examination of wing patterns and genitalia (Moyal & Le Ru 2006; Moyal et al. 2010, 2011; Le Ru et al. 2014). About 65% of the species diversity in this subtribe is found in four genera: Acrapex Hampson (more than 80 species), Sesamia Guenée (more than 50 species) (Toussaint et al. 2012). The remaining genera consist of a few species only, as in the case of the genus Conicofrontia Hampson.

Hampson (1902) described the genus Conicofrontia for Conicofrontia sesamoides based on external characters such as the shape and venation of wings and the structure of palpi, frons and thorax; the genus was named after the slightly conical prominence of the frons. From the beginning, the taxonomic history of Conicofrontia has been a bit
genus. Like Hygrostola homomunda Fletcher the male genitalia has a long and thin uncus, rounded at the apex; valves elongate and narrow; strong cucullus, club-shaped tufted with bristles, with a short neck; sacculus without clavus, presence of a sclerotized plate or spine across the upper edge of the sacculus, aedeagus short, curved, with vesica armed with rows of short stout spines. However it can be easily separated from H. homomunda with the less elongated sacculus, a sclerotized costal margin with a strong spine expansion, pointed backward, juxta large and plate-shaped, vesica with one strong cornuti, ovipositor less elongated, ostium bursae without a cup-shaped antrum.

The four Conicofrontia species collected in the field as larvae from host-plants belong to the Sesamia-like species as defined by Le Ru et al. (2006b). They are morphologically similar with ground colour pinkish buff without any markings; only C. lilomwa larvae looks different with head and thoracic shield dark brown when it is red-brown in the three other species.

Host-plant associations. We report here for the first time the host-plant associations of Conicofrontia spp. to four Andropogonae species, Cymbopogon giganteus, Cymbopogon sp., Miscanthus capensis and Saccharum officinarum. The feeding habits of Conicofrontia diamesa, C. lilomwa and C. sesamoides are similar, with the typical symptom of plant attack as death of the central tiller, often referred to as ‘dead heart’. In addition, like for Acrapex spp. (Le Ru et al. 2014), we always found the larvae solitary in the stems. On the other hand, the feeding habits of C. bipartita is quite different with typical symptoms of plant attack as drying out of the inflorescence with second and third instar larvae found at the bottom of inflorescence, always gregarious up to 50–70 larvae. We speculate that Conicofrontia species larval typically fed on more than one stem before completing their development. The four Conicofrontia species larvae are also found to be markedly hygrophilous species inhabiting grasses along banks of streams, rivers and marshes. We suspect that the larvae disperse when they reach the fourth instar. No pupae were found in stems, and therefore borers probably pupate in the soil.

Our results suggest restricted distributions and host-plant associations of the four Conicofrontia species. Despite extensive surveys in more than 16 sub-Saharan countries we did not collect any Conicofrontia specimens in any other country than South Africa and Tanzania.

Acknowledgments

We thank Markku Pellinen, and two anonymous reviewers for constructive comments on a previous version of the manuscript. We thank the curators of BMNH (M. Honey), MCSN (F. Rigato) and TMSA (M. Krüger) for the permission to study and photograph the types. We also thank Y. Assefa for having shown us infestation on sugarcane fields in Republic of South Africa. Financial support was provided by the Institut de Recherche pour le Développement, by icipe, African Insect Science for Food and Health (Kenya) and by the program "Bibliothèque du Vivant" (Project Noctuid Stem Borer Biodiversity; NSBB) supported by a joint CNRS, INRA and MNHN consortium. Laboratory facilities were provided by icipe, African Insect Science for Food and Health (Kenya) and the laboratory Evolution Génomes Spéciation of the Centre National de la Recherche Scientifique in Gif/Yvette (France). The authors also thank Alexandre Dehne Garcia for his help on the CBGP HPC computational platform. All specimens were collected under appropriate collection permits from the two countries recorded and no conflicts of interest were discovered.

References

http://dx.doi.org/10.1080/00222931408693462
