Re-examination of *Hemidactylus tenkatei* van Lidth de Jeude, 1895: Populations from Timor provide insight into the taxonomy of the *H. brookii* Gray, 1845 complex (Squamata: Gekkonidae)

ANDREW KATHRINER, MARK O’SHEA & HINRICH KAISER

1Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA; present address: Department of Herpetology, Bronx Zoo, 2300 Southern Boulevard Bronx, New York 10460, USA

2Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, West Midlands WV1 1LY, United Kingdom; and West Midland Safari Park, Bewdley, Worcestershire DY12 1LF, United Kingdom

3Department of Biology, Victor Valley College, 18422 Bear Valley Road, Victorville, California 92395, USA; and Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA

4Corresponding author. E-mail hinrich.kaiser@vvc.edu

Abstract

Recent herpetofaunal investigations in Timor-Leste revealed populations similar to *Hemidactylus brookii* Gray, 1845 in four of 13 districts. In order to properly identify these populations, we examined their relationships to other *H. brookii*-complex populations, notably those from nearby Roti Island, Indonesia (to which the name *H. tenkatei* van Lidth de Jeude, 1895 has been applied) and topotypic Bornean samples. We evaluated both meristic and mensural data from a set of specimens that included the type material of *H. brookii* and *H. tenkatei*, and we generated nuclear (RAG1) and mitochondrial (ND2) DNA sequence data for Timor-Leste specimens and a topotypical Bornean specimen presumed to represent *H. brookii sensu stricto*. Morphologically, Timorese geckos are clearly distinct from *H. brookii* and identical to *H. tenkatei*. Our molecular data show that the Bornean specimen thought to be *H. brookii* is genetically congruent with Timor-Leste specimens, and this specimen is therefore identified as *H. tenkatei*. Our data also reveal that the Burmese species *H. subtriedroides* Annandale, 1905 is distinct from both *H. tenkatei* and *H. brookii*. While the current data do not allow us to determine with certainty whether *H. tenkatei* is the oldest available name for these widespread forms, it is the only name that can be reliably applied at this time.

Key words: *Hemidactylus tenkatei*, *H. brookii*, *H. subtriedroides*, Timor-Leste, Borneo, Roti, taxonomy

Introduction

The genus *Hemidactylus* Oken, 1817 is one of the most species-rich clades of geckos with a trans-continental distribution (Kluge 1969). Currently represented by 127 species (Uetz 2014), these nocturnal geckos have adapted to a diverse array of habitat types including the tropics and subtropics of Africa, Asia, northern South America, the Caribbean, and Mediterranean Europe (Bauer et al. 2010b). Considering their adaptive plasticity, the majority of *Hemidactylus* species (approx. 94%) have relatively small distributions in Africa and Asia, while eight species, including *H. brookii*, *H. frenatus* Schlegel in Duméril and Bibron, 1836, *H. garnotii* Duméril and Bibron, 1836, *H. mabouia* Moreau de Jonnès, 1818, *H. persicus* Anderson, 1872, *H. platyurus* (Schneider, 1792), *H. parvimaculatus* Deraniyagala, 1953, and *H. turcicus* Linnaeus, 1758, are present in both the New and Old Worlds, having spread throughout these regions through the agency of humans (Carranza & Arnold 2006). Of these, *H. brookii* has one of the widest distributions and perhaps the most convoluted taxonomic history.

Herpetofaunal surveys in Timor-Leste, Asia’s newest country, revealed several *brookii*-like populations (Fig. 1A) in four of the country’s 13 districts (Kaiser et al. 2011; O’Shea et al. 2012; Sanchez et al. 2012). These were preliminarily identified as *H. cf. tenkatei* by O’Shea et al. (2012) and Sanchez et al. (2012), given their apparent similarity to *H. tenkatei* van Lidth de Jeude, 1895, a name coined to identify *brookii*-complex geckos from the nearby island of Roti. This name had fallen into disuse after being synonymized with *H. brookii* by de Rooij (1915), but two recent inquiries into the validity of *H. tenkatei* by Rösler and Glaw (2010) and Mahony (2011) led to the
attaches a taxon name to a tissue sample, a physical voucher specimen must be available, and this voucher must conform to the parameters represented by the type specimen of that taxon.

Unless as part of a trail of evidence in taxonomy the link between the past (i.e., a holotype, or a type series) and the present (the voucher specimen from which the tissue sample was extracted) is demonstrated, and information is provided to make these links reproducible (e.g., by providing accession numbers for both the voucher specimen and the corresponding tissue sample), the analysis must be considered inconclusive and ultimately of questionable value. This is not only a problem for taxonomists, it is also a problem for those who use or allocate public resources and expect reliable outcomes (Löbl 2014). We freely admit that verifying these links may be a tall order in some circumstances, due to high logistical cost in attempts to evaluate type specimens, unfamiliarity with the morphology of a group under investigation, or simply general time constraints. However, molecular studies are still invariably rooted in the morphology of real animals, and some of the challenges surrounding the identities of *H. brookii* and *H. tenkatei*, as identified in the works of Bauer et al. (2010a), Rösler and Glaw (2010), and Mahony (2011), might have been recognized and addressed had the type specimens been viewed together.

We appreciate the efforts to conduct broad molecular investigations with a biogeographic (as opposed to a taxonomic) focus, and we understand that evaluations of type material adds a layer of significant complexity to such studies: finding and evaluating specimens for each and every tissue sample used or for each DNA sequence obtained (such as from GenBank), makes for a significant workload. However, given that many GenBank accessions have not been verified (and we and others have identified a variety of taxonomic incongruities with these accessions; D. Mulcahy, pers. comm.), we urge extreme caution, and certainly communication with the depositor of a sequence, before the taxon name listed on GenBank is used to represent a species, sight unseen.

Acknowledgments

Our studies in Timor-Leste have benefited greatly from the support of Their Excellencies, former President José Ramos-Horta, Prime Minister Xanana Gusmão, and Minister Ágio Pereira. Their assistance in times of need and their friendship has been much appreciated, and we are thankful to have the leadership of this young nation take such an active role in studies of biodiversity. We are also thankful to Claudia Abate-Debat, former special advisor in the Prime Minister’s Office, whose enthusiasm for our work has been a constant source of encouragement; when doors needed to be opened, Claudia was there to open them. We thank Manuel Mendes, Director of National Parks, who not only granted us our collecting permits but also gave us many ideas and advice. Surveys like ours are not possible without the assistance of many individuals who help with the fieldwork, and we thank our students from Victor Valley College who made the long trip to Timor-Leste, particularly Jester Ceballos, Eric Leatham, David Taylor, Scott Heacox, and Caitlin Sanchez. Thanks also go to our Timorese collaborators, who have progressed from being students into professionals. We thank Venancio Lopes Carvalho, Luis Lemos de Araujo, Agivedo Varela Ribeiro, Zito Afranio Soares, and Paulo Pinto. For their critical support with logistics we thank Kieran Glasspole and Paulo Aniceto (Rentló Car Rental), Ed and Gareth Turner (Air Timor), Ian Groucott (of the airline Emirates), and the management and staff at Timor Lodge Hotel and Com Beach Resort. We gratefully acknowledge the help of Steve Gotte, Ken Tighe, and Jeremy Jacobs (USNM), Patrick Campbell and Barry Clarke (BMNH), and Esther Dondorp (RMNH) for their help with cataloging or loaning specimens, x-rays, and for accommodating our research visits. We are deeply thankful for the support of our colleagues Lee Grismer and Indraneil Das for making their photographs of *H. tenkatei* available, although neither of them knew the true identity of their subjects at the time of the photo session. Financial assistance for equipment and supplies was partially provided by a Title V Grant to Victor Valley College. Student travel was partially financed by grants from the Associated Student Body at Victor Valley College, and by donations from Pamela MacKay and Melinda Fisher. This paper is Contribution No. 14 from the Tropical Research Initiative at Victor Valley College.

Literature cited

http://dx.doi.org/10.1016/j.ympev.2010.06.014

http://dx.doi.org/10.1080/00222939808677938

http://dx.doi.org/10.1016/j.ympev.2005.07.012

http://dx.doi.org/10.1098/rspb.2000.1050

http://dx.doi.org/10.1093/bioinformatics/17.8.754

http://dx.doi.org/10.3897/zookeys.109.1439

http://dx.doi.org/10.11646/zootaxa.3768.4.7

http://dx.doi.org/10.1080/00222938409459777

http://dx.doi.org/10.5962/bbl.title.57275

http://dx.doi.org/10.3724/sp.j.1245.2012.00114

http://dx.doi.org/10.1093/bioinformatics/14.9.817

RE-EXAMINATION OF HEMIDACTYLUS TENKATEI

District, an exclave of Timor-Leste. *Herpetology Notes*, 5, 137–149.

http://dx.doi.org/10.1093/molbev/mst197

http://dx.doi.org/10.1016/j.ympev.2007.01.006