
MATTHEW J. W. COCK1 & T. COLIN E. CONGDON2
1C/o CABI Europe—UK, Bakeham Lane, Egham, TW20 9TY, UK (E-mail: m.cock@cabi.org; mjwcock@btinternet.com)
2African Butterfly Research Institute (ABRI), P. O. Box 14308, Nairobi, Kenya

Table of contents

Abstract .. 302
Introduction ... 302
From Evans’ (1937) Astictopterus group 303
Tisana Evans, 1937 303
Lepelle Evans, 1937 303
Astictopterus C. Felder & R. Felder, 1860 303
Astictopterus stellata Mabille, 1891 304
Astictopterus stellata minensi Trimen, 1894 305
From Evans’ (1937) Amphitia group 306
Prosopalpus Holland, 1896 306
Prosopalpus styia Evans, 1937 306
Kedestes Watson, 1893 308
Kedestes wallengreni wallengrenii Trimen, 1883 309
Probably Kedestes callicles Hewitson, 1868 (in Hewitson 1867–1868) ... 310
From Evans’ (1937) Ceratrichia and Acleora groups 312
Ceratrichia Butler, 1870a 313
Ceratrichia semilansis Joicey & Talbot, 1921 314
Pardaleodes Butler, 1870b 315
Pardaleodes bale Holland, 1896 316
Pardaleodes tibillus torensis Bethune-Baker 1906 319
Ankola Evans 1937 320
Ankola fan Holland, 1894 320
Meza Hemming, 1939 322
From Evans’ (1937) Ploetzia group 323
Perrotia Oberthür, 1916 323
Perrotia albipapla Oberthür, 1916 325
Perrotia ismael Oberthür, 1916 327
Perrotia discussion 327
Chondrolepis Mabille, 1904 (in Mabille 1903–1904) 328
Chondrolepis telisignata Butler, 1896 328
Chondrolepis leggs Heron, 1909 331
Chondrolepis uluguru Larsen & Congdon, 2012 334
Chondrolepis obscurior De Jong, 1986 335
Chondrolepis discussion 339
Monza Evans, 1937 339
Monza alberti Holland, 1896 339
Monza cretacea Snellen, 1872 343
Monza punctata Aurivillius, 1910 343
Monza punctata punctata Aurivillius, 1910 (Uluguru Mountains, Tanzania) 346
Monza punctata punctata Aurivillius, 1910 (Udzungwa Mountains, Tanzania) 348
Monza punctata punctata Aurivillius, 1910 (Mt Mlanje, Malawi) ... 349
Discussion .. 350
Acknowledgements 351
References ... 351

Accepted by C. Prieto: 2 Sept. 2014; published: 10 Oct. 2014

http://dx.doi.org/10.11646/zootaxa.3872.4.1
http://zoobank.org/urn:lsid:zoobank.org:pub:8FECCFC1-7CA9-4A90-B881-4BD40157AD99
Abstract

Partial life histories for 17 Hesperiinae incertae sedis that feed on grasses or bamboos (Poaceae) are described and illustrated. The genera dealt with are: Astictopterus (from Evans’ (1937) Astictopterus group), Prospopalpus, Kedestes (from Evans’ (1937) Ampittia group), Ceratrichia, Pardaleodes, Ankola (From Evans’ (1937) Ceratrichia and Acleros groups), Perrotia (part), Chondrolepis, and Monza (part) (all from Evans’ Ploetzia genera group). The Poaceae-feeders comprise a relatively small proportion of the Afrotropical Hesperiinae fauna, particularly the mainland Afrotropical fauna. The caterpillars shown here are fairly homogeneous, with the head wider nearer the base, and lacking obvious setae on the body. Wax glands have been noted over most of the ventral surface A1–A8 in the final instar of Ceratrichia, Pardaleodes and Monza, but are absent in Chondrolepis, and either absent or not documented for other genera. The short double frontal projection of Tsitana uitenhaga is unusual, but pupae of the congeneric species have not been documented. The pupae of Kedestes spp. generally have extensive black or dark areas. The pupae of Pardaleodes and Ankola are very flimsy and collapse after emergence. All known pupae of Chondrolepis spp. have a short, blunt downturned frontal projection, not seen for any other Afrotropical genera, although Semalea spp. may have a short blunt projection. The remaining pupae are all generally similar and undistinguished. These are not substantial differences, but suggest that pupal characters may be useful in grouping some of the genera of Afrotropical Hesperiinae incertae sedis.

Key words: Lepidoptera, Afrotropical Hesperidae

Introduction

This is a further contribution to a series on the biology of Afrotropical Hesperidae, which have dealt with Coeliadinae in Part 1 (Cock 2010), the tribes Tagiadini (Part 2: Cock & Congdon 2011a) and Celaenorrhini (Part 3: Cock & Congdon 2011b). Treatments of the remaining tribe of Pyrginae (Carcharodini) and the Heteropterinae have been deferred to tackle the Hesperiinae, where documented life histories are likely to be more helpful in untangling the classification of the subfamily in the context of T.B. Larsen’s on-going revision of the Afrotropical species.

Cock & Congdon (2012) introduced the Afrotropical Hesperiinae and treated the biology of the Afrotropical Baorini, which are grass-feeders, although we anticipate that one or more species will be found to feed on Arecaceae instead, or as well (Cock et al. 2014). The remaining Afrotropical Hesperiinae are currently incertae sedis (Warren et al. 2009). In our treatment, we have grouped the Hesperiinae incertae sedis based on their known food plants: dicotyledon-feeders (Cock & Congdon 2013) and palm-feeders (Cock et al. 2014). Here, we treat the grass and bamboo-feeders, while future parts in preparation will cover the Dracaena-feeders and the remaining monocotyledon-feeders. Given the context, all food plants mentioned below belong in the Poaceae, unless otherwise indicated.

Evans (1937) divided the Hesperiinae into a series of genera groups: the Astictopterus group, the Ampittia group, the Ceratrichia group, the Acleros group, the Ploetzia group and the Gegenes group. Here we include members of all these groups apart from the Gegenes group (which comprises dicotyledon-feeders and the Poaceae-feeding Baorini). The sequence of Poaceae-feeding species used here follows Evans’ generic groups and his sequence of genera within the groups.

As in previous papers, material referred to as TCEC in this paper reflects the outputs of the Butterfly/Host Plant Research Programme which has run in Tanzania and neighbouring countries for over 20 years under the auspices of the Tanzania Commission for Science and Technology (COSTECH). The key researchers have been T.C.E. Congdon, I. Bampton (deceased May 2010) and S.C. Collins. TCEC did all of his rearing in collaboration with the late Ivan Bampton, and it is not possible to separate the efforts of these co-workers. However, TCEC did all the photography and writing up of what they reared together. Hence, reference to TCEC collections in this paper should automatically be considered to include Bampton. Both Congdon and Bampton have been Research Associates of the African Butterfly Research Institute (ABRI) since its inception in 1996, and all material collected and reared under the COSTECH programme has been incorporated in the ABRI collection in Nairobi.

From Evans’ (1937) Astictopterus group

Evans’ (1937) Astictopterus group included the genera Hovala Evans, Metisella Hemming, Tsitana Evans, Lepella
although Semalea spp. may have a short blunt projection. However, the remaining pupae are all rather generally similar and undistinguished. These are not substantial differences, but suggest that pupal characters may be useful in grouping some of the genera of Afrotropical Hesperiinae incertae sedis.

Cock & Congdon (2012) drew attention to the characteristic pupae of most Baorini—green, with or without pale stripes, elongate, with a well-developed, forward directed, pointed frontal spike, but no wax—and pointed out that similar pupae are found in several other tribes and incertae sedis groups of Hesperiinae. We suggested that this pupa form might be an adaption to pupating in an exposed or partially exposed way, particularly on grasses and palms. Here, we have confirmed that no other African grass-feeding Hesperiinae have this type of pupa, although we speculate that the pupa of Prosopalpus stylo may be found to be of this type, and we shall show that it is found in Osmodes (incertae sedis) and Afrotropical Heteropterinae. The corollary of this is that pupae treated here without this camouflaged shape and colouring are probably formed in closed shelters that do not expose them to visually hunting predators, and this seems to be the case from our observations.

Acknowledgements

As usual, we thank Torben Larsen for his encouragement, support, use of his photograph in Figure 21, discussions on various aspects and for checking various questions against his material and collections to which he has had access, and helping us avoid several errors. Similarly, Steve Collins (ABRI) has continued to provide his support, and made the resources of ABRI available to us. We thank Blanca Huertas and David Lees who facilitated visits to The Natural History Museum, London, to examine the African Hesperiidae and dry early stages collection, and the latter for sharing information on Perrotia spp.

Identifications of food plants from Kenya were mostly made by the East Africa Herbarium, National Museums of Kenya and MJWC thanks the Botanist in charge, Dr Christine Kabuye, for her support. TCEC thanks Hassam Patel, who identified Setaria grandis at the Ruo Gorge, Malawi. Both authors thank the Director and Staff of the Royal Botanic Gardens Kew for their help.

In the 1990s, several of MJWC's colleagues at that time with CABI, including Drs Annette Walker, John LaSalle and Andy Polaszek examined the parasitoids and made a preliminary sort into species, but unfortunately were not in a position to take this work any further. Dr Janny Vos (CABI) checked MJWC's Dutch translation (Monza cretacea). Although we have not cited Mark Williams’ website Afrotropical Butterflies (http://www.atbutterflies.com/) we did check against this comprehensive compilation of information on Hesperiidae, to make sure that we had not overlooked important references on the biology of the species treated here. Freerk Molleman readily agreed to let us use one of his photographs, although in the event we decided not to use it for this paper. Ian Sharp and Vaughan Jessnitz kindly shared with us their images of the early stages of the southern population of Kedestes callicles.

The ABRI team is most grateful to the Tanzania Commission for Science and Technology for permission to pursue our research in Tanzania over the last 20 years.

References

http://dx.doi.org/10.1080/00222935508655708
http://www.sabonet.org.za/redatalist/redatalist_index.htm
http://dx.doi.org/10.1111/j.1365-3113.1939.tb01278.x
http://dx.doi.org/10.1080/00222937708682096
http://dx.doi.org/10.1111/j.1096-3642.1896.tb03030.x
http://dx.doi.org/10.1164/zootaxa.3666.4.4
Larsen, T.B. & Congdon, T.C.E. (2012) The genus Ampittha in Africa with the description of a new species (Hesperiidae; Aeromachini) and three new species in the genera Andronymus and Chondrolepis (Hesperiinae, incertae sedis) (Lepidoptera: Hesperiidae). Zootaxa, 3322, 49–62.
http://dx.doi.org/10.1164/zootaxa.3666.4.4
Plötz, C. (1879) Verzeichniss vom verstorbenen Prof. Dr. R. Buchholz in West-Africa – beim Meerbusen von Guinea –

http://dx.doi.org/10.1080/002229323508633328

http://dx.doi.org/10.1111/j.1365-3113.2008.00463.x
