Contribution to the knowledge of cotylean flatworms (Turbellaria, Polycladida) from Iranian coasts: Introducing a new species, with remarks on new records

ABDOLVAHAB MAGHSOUDLOU1,3 & HASSAN RAHIMIAN2
1Department of Marine Living Resources, Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
2School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
3Corresponding author. E-mail: wahabbio@gmail.com

Abstract

Very little information is available regarding marine free-living flatworms not only from Iran, but throughout the countries surrounding the Persian Gulf and the Gulf of Oman. The present study first introduces a new euryleptid species, and then reports four pseudocerotid polyclads which inhabit Iranian shallow rocky shores of the Persian Gulf and the Gulf of Oman. Maritigrella makranica sp. nov. is characterized dorsally by a medial cream or white reticulated appearance containing pale orange spots in a honeycomb pattern, a distinct orange submarginal band around the entire body margin and between the marginal tentacles, black spots scattered around mid-dorsal surface, becoming more sparse on raised median region and towards body margin, surrounded by a dark-grey halo around the body midline and orange-black halo towards margin. Three of the four pseudocerotids species belonging to the genera Pseudobiceros Faubel, 1984; Pseudoceros Lang, 1884; and Thy-sanozoon Grube, 1840, are new records for the studied areas, while the other has been reported in the Persian Gulf previously. Comments on Iranian species are provided and associations of flatworms with ascidians and sponges were observed.

Key words: Platyhelminthes, Pseudocerotidae, Euryleptidae, Maritigrella makranica sp. nov., Persian Gulf, Gulf of Oman

Introduction

Most polyclad flatworms live in coastal marine environments (Newman & Cannon 2003); nevertheless, some species have been collected from the mesopelagic (Faubel 1984b; Quiroga et al. 2008) and bathypelagic zones (Quiroga et al. 2006). These flatworms feed on ascidians (Newman et al. 2000), crustaceans (Lee et al. 2006; Prudhoe 1968), gorgonians and hard corals (Bock 1926; Newman & Cannon 2003; Nosratpour 2008; Rawlinson et al. 2011). Some species (i.e. Acotylea) have even been found in symbiotic association with mollusks (Faubel et al. 2007; Pearse & Wharton 1938; Wheeler 1894) and Echinodermata (Doignon et al. 2003).

Lang (1884) divided the order Polycladida into two suborders: Acotylea and Cotylea, based on the absence or presence of a sucker. Faubel (1983; 1984a), in his classification based on anatomical characters of the reproductive structures, placed 28 families within Acotylea and 15 families within Cotylea. In total, over 1,000 species of polyclads have been described (Rawlinson 2008), of which about 400 species are cotyleans (Rawlinson & Litvaitis 2008).

Among cotyleans, the family Pseudocerotidae includes some of the most diverse and brightly colored marine flatworms (Newman and Cannon 1994). In comparison with the pseudocerotids, Euryleptidae are relatively rare throughout the Indo-Pacific (Newman and Cannon, 1994). A major distinction between Pseudocerotidae and Euryleptidae is the presence of a tubular rather than a ruffled pharynx in euryleptids. Within the two aforementioned families, generic discrimination is based on the anatomical characters of the reproductive system, the digestive system, and external characters (e.g. dorsal papillae, tentacles and tentacular eyes). Due to the homogeneity of the male reproductive system, species identification within pseudocerotid and euryleptid genera is often based on the color patterns (Hyman 1955; Litvaitis & Newman 2001; Newman & Cannon 1994; Prudhoe 1985). However, some believe that color patterns are highly homoplasious (Rawlinson & Litvaitis 2008), a subject

Accepted by W. Sterrer: 25 Aug. 2014; published: 8 Sept. 2014
distribution of this species on the southern coasts of Iran (the Persian Gulf and Gulf of Oman), for some reasons, is limited to the eastern side of Qeshm Island (Persian Gulf, Fig. 1, stations 31 and 33). In terms of the SACFOR abundance scale for animals greater than 15 cm (Connor et al. 1997), this species was distributed frequently on the aforementioned Island.

Khalili et al. (2009) found their specimens associated with orange sponge (Cliona vastifica); we collected our specimens under rocks and in tidal pools, mostly covered with red algae (Solieria) and the sponge, Gelliodes carnosa (Fig. 10D).

Discussion

Marine polyclads are virtually ignored in most studies of macrobenthos, probably because of difficulties in sampling (i.e. cryptic mimicry and negative photoactive behavior), handling, fixation and identification of this group. Those difficulties along with many incomplete (e.g. without color documentation) or inadequate descriptions (e.g. based on immature specimens) as well as lack of deposited type specimens have made the polyclads a taxonomically difficult group around the world (Newman & Schupp 2002; Rawlinson 2008). Consequently, our knowledge of the polyclads of the Western Indo-Pacific is very poor, and is restricted to a few reports from the Red Sea (Newman and Cannon (2005). Unlike the Western Indo-Pacific, some of the highest diversities of polyclads (more than 600 species) have been recorded in the Eastern Indo-Pacific region, due to focused, long-term efforts (Bolaños et al. 2007).

While Khalili et al. (2009) had previously reported the occurrence of Tythosoceros lizardensis and Thysanozoon sp. from Qeshm Island (Persian Gulf) the present study is the first comprehensive taxonomic study of marine polyclads along the Iranian coasts of the Persian Gulf and Gulf of Oman. Part of the results obtained during the study is presented here, and the rest will be presented in forthcoming communications. Among the species presented here, one (Thysanozoon brocchii) is cosmopolitan, Pseudobiceros uniaborensis is distributed in the Indian and Pacific Oceans, and one (Tythosoceros lizardensis) is distributed in Eastern and Western Indo-Pacific. Apart from T. lizardensis, other cotylean species were associated with ascidians, which has been reported previously in pseudocerotid and euryleptid flatworms (Bahia et al. 2012; Bolaños et al. 2007; Marcus & Marcus 1951; Newman et al. 2000; Newman & Schupp 2002).

Acknowledgment

This study was partly financed by the Research Office of the University of Tehran, and Iranian National Institute for Oceanography and Atmospheric Science (INIOAS). The authors would like to thank Dr. Farzaneh Momtazi and Mr. Abbas Kazemi for their extensive help thorough sampling excursions. The authors are grateful to the esteemed referees for their useful comments that lead to improve the scientific content and English writing of this article.

References


COTYLEAN POLYCLADS FROM PERSIAN GULF & GULF OF OMAN

Zootaxa 3860 (4) © 2014 Magnolia Press · 341

http://dx.doi.org/10.1111/j.1525-142x.2009.00331.x


http://dx.doi.org/10.1080/01688170.1986.10510199


http://dx.doi.org/10.2108/zsj.20.357


http://dx.doi.org/10.1017/s0025315407055245

http://dx.doi.org/10.1080/07924259.2011.611825


http://dx.doi.org/10.1016/0012-821x(76)90194-1

http://dx.doi.org/10.5479/si.00963801.104-3341.115

http://dx.doi.org/10.3897/zookeys.31.136


http://dx.doi.org/10.1080/00222930500485263


http://dx.doi.org/10.11646/zootaxa.3753.4.5

http://dx.doi.org/10.11646/zootaxa.3683.3.2


http://dx.doi.org/10.11646/zootaxa.3683.3.2


http://dx.doi.org/10.1080/002229300299606


http://dx.doi.org/10.2307/1943085


http://dx.doi.org/10.3853/j.0067-1975.31.1978.205


http://dx.doi.org/10.1017/s002229300802105


http://dx.doi.org/10.1007/s00227-007-0845-3


http://dx.doi.org/10.1186/1742-9994-7-12


http://dx.doi.org/10.1007/s13237-014-0045-3


http://dx.doi.org/10.1007/s00338-011-0745-3


http://dx.doi.org/10.1111/j.1744-7410.2007.00119.x


http://dx.doi.org/10.1002/jmor.1050090203