Bivalves from the latest Jurassic-earliest Cretaceous hydrocarbon seep carbonates from central Spitsbergen, Svalbard

KRZYSZTOF HRYNIEWICZ¹³, CRISPIN T.S. LITTLE² & HANS ARNE NAKREM⁴

¹Natural History Museum, University of Oslo, 1172 Blindern, 0318 Oslo, Norway. E-mail: krzysztof.hryniewicz@nhm.uio.no; h.a.nakrem@nhm.uio.no
²School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK. E-mail: earctsl@leeds.ac.uk
³Corresponding author
Table of content

Abstract .. 4
Introduction .. 4
Material and methods 6
Class Bivalvia Linnaeus, 1758 7
Subclass Protobranchia Pelseneer, 1889 7
Order Solemyoida Dall, 1889 7
Family Solemyidae Gray, 1840 7
Genus Solemya Lamarck, 1818 8
 Solemya (Petraena) cf. woodwardiana Leckenby, 1859 8
Family Nucinellidae Vokes, 1956 12
Genus Nucinella Wood, 1851 12
 Nucinella svalbardensis sp. nov. 12
Order Nuculoida Dall, 1889 13
 Superfamily Nuculoidea Gray, 1824 13
Family Nuculidae Gray, 1824 15
Genus Dacromya Agassiz, 1839 15
 Dacromya chetaensis Sanin, 1976 15
Family Mallettidae H. Adams & A. Adams, 1858 16
Genus Mesosaccella Chavan, 1946 16
 Mesosaccella rogovi sp. nov. 17
 Mesosaccella toddi sp. nov. 19
Subclass Autobranchia Grobben, 1894 22
Superfamily Pectinoidea Rafinesque, 1815 26
Family Pectinidae Rafinesque, 1815 26
Genus Camptonectes Agassiz in Meek, 1864 26
 Camptonectes (Costicamptonectes) aff. milnelandensis Fürsich, 1982 27
 Camptochlamys (Camptochlamys) clathratus (Roemer, 1836) 27
 Camptonectes spp. 28
Order Limida Waller, 1978 28
Family Limidae Rafinesque, 1815 28
Genus Pseudolima Arkel in Douglas & Arkel, 1932 28
 Pseudolima arctica (Zakharov, 1966) 28
Superorder Heteroncha Gray, 1854 30
Clade Heterodontinae Neumayr, 1884 30
Order Lucinida Neumayr, 1884 30
Family Lucinidae Fleming, 1828 30
Genus Tehamatae Kiel, 2013 31
 Tehamatae rasmusseni sp. nov. 31
Family Thyasiridae Dall, 1901 35
Genus Cretaxinus gen. nov. 35
 Cretaxinus hurumi sp. nov. 37
Order Venerida Gray, 1854 41
Family Articidae Newton, 1891 41
Genus Pseudotrapezium Fischer, 1887 41
 Pseudotrapezium aff. groenlandicum Spath, 1936 41
Subclass Anomalodesmata Dall, 1889 43
Order Pholadomyoida Newell, 1965 43
Family Pholadomyidae Gray, 1847 43
Genus Gonioyma Agassiz, 1842 43
 Gonioyma literata (J. Sowerby, 1819) 43
Discussion .. 44
Acknowledgments 46
References .. 47

JURASSIC-CRETACEOUS SEEP BIVALVES FROM SVALBARD

Zootaxa 3859 (1) © 2014 Magnolia Press · 3
Abstract

The bivalve fauna from the latest Jurassic–earliest Cretaceous hydrocarbon seep deposits from central Spitsbergen, Svalbard comprises at least 17 species, four of which belong to chemosymbiotic taxa often found at seeps. These are the solemyid Solemya (Petasma) cf. woodwardiana; Nucinella svalbardensis sp. nov., which belongs to a group of large Nucinella species known from seeps and deep water environments; the lucinid bivalve, Tehamatae rasmussenii sp. nov., included in a genus widely distributed in other Jurassic–Cretaceous seeps; and Cretaxinus hurumi gen. et sp. nov., which is the oldest known thyasirid and is discussed in relation to other large seep-restricted genera in this family. The remaining species in the fauna belong to ‘background’ genera known from coeval normal marine sediments, mostly from the Boreal area. These include the nuculid Dacromya chetaensis, two new malletiids (Mesosaccella rogovi sp. nov. and M. toddi sp. nov.), the oxytomiiid Oxytoma octavia, at least three Buchia species, at least two pectinids, including Camptonectes (Costicamptonectes) aff. milnelandensis and Camptonectes (Camptochnellia) clathratus, the limid Pseudolimea arctica, the articid Pseudotrapezium aff. groenlandicum, and the pholadomyid Goniomya literata. The large number of ‘background’ species in the bivalve fauna is probably a reflection of the shallow-water setting of the Svalbard seeps. This might also explain the lack of the seep-restricted modiomorphid bivalve Caspiconcha from the fauna. With solemyids, Nucinella, lucinids and thyasirids, the latest Jurassic–earliest Cretaceous bivalve seep fauna of Svalbard contains typical representatives of the Mesozoic bivalve seep faunas, both long established and young evolutionary colonists.

Key words: Nucinella, Solemya, lucinids, thyasirids, Jurassic, Cretaceous, background fauna, evolution, new genus, new species

Introduction

Bivalves are one of the major groups of animals found in chemosynthesis-based ecosystems in modern oceans (e.g. Van Dover 2000; Dando 2010; Taylor & Glover 2010; Watanabe et al. 2010) and chemosymbiotic bivalve species often represent a dominant element of such assemblages (Sibuet & Olu 1998; Van Dover et al. 2003; Levin 2005; Dupperon 2010). The evolutionary history of bivalves in hydrocarbon seep environments is long and can be traced back to the Devonian (Peckmann et al. 1999; Aitken et al. 2002; Campbell 2006). However, most of the well studied seep bivalve faunas are from Eocene or younger circum-Pacific settings. These are dominated by bathymodiolin and vesicomyid bivalves, often associated with solemyids, lucinids and thyasirids (Squires & Goedert 1991; Squires & Gring 1996; Goedert et al. 2003; Amano & Kiel 2007; Saether et al. 2010; Amano & Ando 2011; Gill & Little 2013; Kiel & Amano 2013). Knowledge of pre-Eocene bivalve seep faunas is less complete (e.g. Amano et al. 2007; Kiel et al. 2008a; Kiel et al. 2010; Jenkins et al. 2013; Kiel 2013), which partially reflects the smaller number of Mesozoic and particularly Palaeozoic seep sites available for study. Pre-Eocene bivalve seep faunas are composed predominantly of solemyids, Nucinella, lucinids and thyasirids (Kiel 2010). In addition, some Late Jurassic to Late Cretaceous seep faunas contained species of the large obligate seep modiomorphid genus Caspiconcha, which possibly had chemosymbionts (e.g. Kelly et al. 2000; Kiel et al. 2010; Jenkins et al. 2013; Kiel et al. 2013).

This paper is a systematic study of the bivalve fauna from the latest Jurassic–earliest Cretaceous hydrocarbon seep deposits from central Spitsbergen, Svalbard. It is part of a wider taxonomic treatment of macrofossils from these sites, including, so far, ammonites (Wierzbowski et al. 2011), cephalopod arm hooks (Hammer et al. 2013), lingulate brachiopod (Holmer & Nakrem 2012) and serpulids (Vinn et al. in press). Aside from these the Svalbard seep carbonates also contain belemnoid guards, crustaceans, echinoderms, gastropods, rhynchonellate brachiopods, scaphopods and sponges (Hammer et al. 2011) as well as agglutinated and calcareous foraminifera (Hjálmarsdóttir et al. 2012). The initial list of bivalve taxa in Hammer et al. (2011) comprised 14 bivalve species, all of which were left in open nomenclature. This paper extends that number to more than 17, and presents systematic descriptions for most of them; the buchiid bivalves will be dealt with in a separate paper.

Geological background. Bivalve specimens have been found in 13 out of 15 seep carbonates in the Sassenfjorden area, Central Spitsbergen, Svalbard (Fig. 1). The seeps are hosted by the Slottsmøya Member, which is composed mainly of grey to black organic-rich shales with lesser silty beds and carbonate concretions, and was deposited on the middle to outer shelf (Nagy et al. 1988; Dyvik et al. 1991; Collignon & Hammer 2012). Based on ammonite faunas, the seep deposits are of Late Volgian to latest Ryazanian age (Fig. 2; Wierzbowski et al. 2011). The Volgian and Ryazanian are regional stages applied around the Jurassic–Cretaceous transition in the Boreal realm, where Tithonian and Berriasian standards are not applicable, due to strong ammonite provincialism.
not because of palaeobiogeography, then the absence of *Caspiconcha* in the Svalbard seeps might have been down to palaeobathymetry, as seep-restricted species are mostly found in deep-water sites (Kiel 2010). However, the Kuhnpasset seeps formed on the middle to outer shelf, like the Svalbard seeps, so the reasons for the absence of *Caspiconcha* in the latter are currently opaque, and may have had more local, ecological explanations.

The Svalbard seep bivalve fauna shares several common seep-related taxa with other Late Jurassic–Early Cretaceous seep sites, including solemyids, *Nucinella* and (as noted above) lucinids. Members of this family are known at seeps from the Oxfordian and are fairly common in seeps later on, often having a seep-restricted distribution, i.e. *Tehamatea*, which ranges from the Tithonian to the Albian in seeps world-wide (Kiel et al. 2010; Kiel 2013). Solemyids have been recorded in Carboniferous seeps, although they are not well enough preserved to confirm this identification (Peckmann et al. 2001). In the Mesozoic solemyids occur in seeps from the Tithonian (Kiel et al. 2008b) and were then common members of later Mesozoic seep communities, occurring in the Svalbard seeps (this study), Tithonian–Albian seeps of California (Kiel et al. 2008b; Kaim et al. in press), the Barremian Kuhnpasset seeps (Kelly et al. 2000), and the Albian–Campanian seeps of Hokkaido (Kiel et al. 2008a) and New Zealand (Kiel et al. 2013). *Nucinella* is known from seeps since the Triassic (Peckmann et al. 2011). Apart from Svalbard it then occurred in Barremian seeps of California (Kaim et al. in press), in Albian–Cenomanian seep sites from New Zealand (Kiel et al. 2013) and Cenomanian–Campanian seeps from Hokkaido (Amano et al. 2007; Kiel et al. 2008a). It does appear at seeps later on in the Oligocene as well (Amano et al. 2013). The latest Jurassic–earliest Cretaceous Svalbard seeps contain thyasirids, represented by *Cretaxinus hurumi*. Early Cretaceous seep thyasirids are rare, but have been reported i.e. from Valanginian–Hauterivian seeps from Carpathians (Ascher 1906; Kaim et al. 2013) and from Albian seeps from Japan and New Zealand (Kiel et al. 2010; 2013). Thyasirids are fairly common in Late Cretaceous and Cenozoic seeps (e.g. Goedert et al. 2003, Kiel et al. 2008a). The latest Jurassic–earliest Cretaceous bivalve seep fauna of Svalbard thus contains usual members of the Late Mesozoic seep faunas. These comprise either background solemyids and *Nucinella*, established at seeps since no later than Palaeozoic or the Early Mesozoic, respectively, or lucinids and thyasirids, radiating into seeps at least in the Late Jurassic and earliest Cretaceous, respectively (Fig. 20).

Acknowledgments

We would like to thank all the members of the Svalbard Jurassic Research Group (SJRG), who participated in the field work between 2007 to 2012. Special thanks go to Jørn Harald Hurum, Natural History Museum, University of Oslo, the leader of the Svalbard expeditions, for allowing us to participate in the field work. Thanks also to Øyvind Hammer, Natural History Museum, University of Oslo, for explaining how to use the PAST software; Franz-Josef Lindemann, the Natural History Museum, University of Oslo, for discussions regarding open nomenclature; Kazutaka Amano, University of Joetsu, Japan, for preparing and photographing the hinge of the arcticid bivalve; and Steffen Kiel, Georg-August-Universität Göttingen, Germany, for discussions about Mesozoic seep lucinid characters. Krzysztof Hryniewicz would also like to thank Jon Todd, Natural History Museum, London, and Jan Audun Rasmussen, Natural History Museum of Denmark, Copenhagen, for help during museum visits. Special thanks go to Robert G. Jenkins, Kanazawa University, Japan, Steffen Kiel, and Nikolaus Malchus, Institut Català de Paleontologia, Bellaterra, Spain, for careful revision and comments on the manuscript.

References

http://dx.doi.org/10.2113/50.2.217

http://dx.doi.org/10.1080/0022293031001647442

http://dx.doi.org/10.1016/j.palaeo.2013.07.015

http://dx.doi.org/10.4002/040.052.0201

http://dx.doi.org/10.1016/j.palaeo.2012.11.020

http://dx.doi.org/10.1080/10236247309378492

Campbell, K. (2006) Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and

http://dx.doi.org/10.1134/s0869593807030057

http://dx.doi.org/10.3853/j.0067-1975.17.1930.773

http://dx.doi.org/10.3853/j.0067-1975.18.1931.725

http://dx.doi.org/10.3853/j.0067-1975.18.1930.773

http://dx.doi.org/10.4202/app.2011.0026

http://dx.doi.org/10.1016/j.palaeo.2013.03.010

http://dx.doi.org/10.4002/040.051.0202

http://dx.doi.org/10.1130/0091-7613(1996)024<0799:wvmrf>2.3.co;2

mussels. *Zootaxa*, 2577, 1–45.

Stewart, F.J. & Cavanaugh, C.M. (2006) Bacterial endosymbioses in *Solemya* (Mollusca: Bivalvia)—model systems for studies...

