Seven new species of *Psechrus* and additional taxonomic contributions to the knowledge of the spider family Psechridae (Araneae)

STEFFEN BAYER

Arachnology, Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt/Main, Germany.
E-mail: Steffen.Bayer@smnk.de

Table of contents

Introduction ... 2
Material and methods ... 2
Taxonomy ... 4
Family Psechridae Simon, 1890 ... 4
Genus *Psechrus* Thorell, 1878 ... 4
Key to species of *Psechrus* .. 5
argentatus-group ... 8
Psechrus libelti Kulczyński, 1908 9
singaporensis-group .. 10
Psechrus norops Bayer, 2012 .. 11
ancoralis-group ... 13
Psechrus rani Wang & Yin, 2001 13
Psechrus khammouan Jäger, 2007 14
himalayanus-group ... 15
Psechrus luangprabang Jäger, 2007 16
Psechrus arietinus sp. nov. ... 16
Psechrus jaegeri Bayer, 2012 ... 20
Psechrus insulanus sp. nov. .. 21
sinensis-group .. 22
Psechrus ampliacensis sp. nov. 23
Psechrus obtectus Bayer, 2012 26
Psechrus kenting Yoshida, 2009 28

The following species are currently not assignable to any of the *Psechrus* species-groups established by Bayer (2012) .. 30
Psechrus crepido Bayer, 2012 .. 30
Psechrus omistes sp. nov. ... 31
Psechrus quasillus sp. nov. .. 33
Psechrus huberi sp. nov. ... 36
Psechrus wade sp. nov. .. 38

Unidentified *Psechrus* specimen from Baluno, Mindanao, Philippines .. 40
Genus *Fecenia* Simon, 1887 ... 41
Fecenia protensa Thorell, 1891 41

Discussion .. 46
Acknowledgements ... 53
References .. 53
Abstract

Seven new *Psechrus* species are described from South East Asia: *P. arietinus* sp. nov. (♂♀, Vietnam), *P. insulanus* sp. nov. (♂, Thailand), *P. ampullaceus* sp. nov. (♂♀, Vietnam), *P. omistes* sp. nov. (♂, Indonesia, Sumatra), *P. quasillus* sp. nov. (♂♀, Malaysia, Borneo), *P. huberi* sp. nov. (♀, Philippines), and *P. wade* sp. nov. (♂, Philippines). For the following species, new records are listed and intraspecific variation is discussed and illustrated: *P. libelti* Kulczyński, 1908, *P. norops* Bayer, 2012, *P. rani* Wang & Yin, 2001, *P. khammouan* Jäger, 2007, *P. luangprabang* Jäger, 2007, *P. jaegeeri* Bayer, 2012, *P. obtectus* Bayer, 2012, *P. kenting* Yoshida, 2009 and *P. crepido* Bayer, 2012, and *Fecenia protensa* Thorell, 1891. The latter species is recorded from Vietnam for the first time. *P. norops*, *P. libelti* and an unidentified *Psechrus* species from Baluno, Mindanao are for the first time characterised and illustrated by their pre-epigynes and pre-vulvae.

Key words: Taxonomy, pre-epigyne, pre-vulva, intraspecific variation, copulatory organs, India, Vietnam, Laos, Thailand, Malaysia, Indonesia, Philippines

Introduction

The spider family Psechridae has been revised several times (Levi 1982; Wang & Yin 2001; Bayer 2011, 2012). In the latest revisions of *Fecenia* Simon, 1887 (Bayer 2011) and *Psechrus* Thorell, 1878 (Bayer 2012), both genera have been revised on a worldwide basis. Nevertheless, the state of knowledge on many species is incomplete and questions remain. In some species structural intraspecific variation of female copulatory organs is remarkably high, for example in *Psechrus khammouan* Jäger, 2007 the respective variants were considered to belong to the same species (Bayer 2012), but, due to the lack of material, without 100% certainty. On the other hand there are species showing remarkable similarities to others distributed nearby. So the question arises, “Do both forms belong to one and the same species?”, e.g. *Psechrus taiwanensis* Wang & Yin, 2001 and *P. kenting* Yoshida, 2009. In most cases the uncertainty is due to the lack of sufficient numbers of specimens of both sexes. Only relatively low numbers of specimens have been available from countries/islands such as India, Vietnam, Cambodia, the Greater Sunda Islands and the Philippines. In the last few years, additional material has become available from countries/islands listed above. Several previously unknown forms of *Psechrus* are now recognised, described and as far as possible assigned to one of the eight *Psechrus* species groups established by Bayer (2012). These species groups are based mainly on characters of the copulatory organs (but also upon several somatic characters, such as the spination of the dorsal tibia III and IV, the colouration of the carapace or the relative length of the legs) (Bayer 2012). Besides the *Psechrus* species, one *Fecenia protensa* Thorell, 1891 female from Vietnam showing special morphological features became available. Some species investigated herein were (additionally) represented by subadult females. Bayer (2011, 2012) suggested that species discrimination based on primordial female copulatory organs (pre-epigynes/pre-vulvae) is possible for *Fecenia* species and may be possible for *Psechrus* species as well. Therefore, besides the adult material, this study also focusses on subadult females.

Material and methods

Most of the spider material examined in the present study was borrowed from natural history museums (listed below) or was provided by colleagues, who collected specimens in different regions of SE Asia. Specimens were examined and drawn under a Leica M 165 C stereomicroscope with a drawing mirror. Photos of preserved spiders and copulatory organs were taken with a Sony DSC W70 compact camera via an ocular of the stereomicroscope. The material was preserved in 70% denatured ethanol. Before the dissection of the female copulatory organs they were cleared of surrounding hairs. The opaque tissue surrounding the vulva was removed in order to have the best possible view on the different vulva-structures. Vulvae were cleared in 96% DL-lactic acid (C₃H₆O₃). As the cuticula surrounding the epigyne may curl and structures may get deformed in the course of using lactic acid, this method could not be applied to every specimen. Unfortunately, other clearing-methods (e.g. clove oil or KOH) were not successful in Psechrindae. In males the cymbial hairs of areas close to the bulb were removed so that all the crucial structures could be clearly viewed.

All measurements and all numbers listed next to the scale bars are in millimetres (mm). For the present study the “opisthosoma length” excludes spinnerets and petiolus. Leg formula (from longest to shortest leg) and leg
retrolatero-distally on the palpal tibia. At this position *Psechrus* shows a bundle of long, strong hairs (see Figs 26B–C, 27F of male palps before preparation). In several species such hairs also appear ventro-distally or ventrally and ventro-distally on the palpal tibia. In males of the *mulu*-group tibial processes (again?) appear, either ventro-distally or retrolatero-distally (Levi 1982; Bayer 2012). The latter situation is exhibited by *P. ulcus* Bayer, 2012. It is not understood if this tibial process is homologous to the RTA (regain of RTA) or if it represents an independently evolved process; it lacks the strongly sclerotised and dark sections possessed by most of the “regular” RTAs in spiders of the ‘RTA -clade’.

Acknowledgements

I express my deepest gratitude to Peter Schwendinger (MHNG, Geneva), Peter Jäger (SMF, Frankfurt am Main) and Siegfried Huber (Oberuohlidingen), who supported my studies in recent years by providing numerous psechrid specimens. Without all this important material the state of knowledge concerning this spider family would only be half as comprehensive as it is now. These colleagues have also provided photos and useful information on localities and habitats, and have given helpful advice. Many thanks to Hoi Sen Yong (Institute of Biological Sciences, University of Malaya, Kuala Lumpur), Yong Chao Su (Systematics and Evolutionary Biology Lab, Dept. of Life Sci., Tunghai University) and Xinping Wang (University of Florida, Gainesville) for providing (recently recorded) specimens, which were very important for the present study. I thank Herbert Levi (Harvard University, Cambridge, Ms.) for kindly providing information about a specimen of *Psechrus crepido* he formerly examined and was included in the present study. I am grateful to the following curators for the loan of Psechridae material: Peter Schwendinger (Museum d’histoire naturelle, Geneva), Peter Jäger & Julia Altmann (both Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main), Norman I. Platnick & Louis Sorkin (both American Museum of Natural History, New York) and Christine Rollard & Elise-Anne Leguin (both Museum national d’huiore naturelle, Paris). Thanks to Christian Dilger, Thomas Mitschang, Torsten Müller & Holger Stenschke for support in different ways. Sincere thanks to Hubert Höfer and the staff of the zoology section of the Natural History Museum, Karlsruhe, for the open-armed welcome at my new position at that institute.

I wish to thank Zhi-Qiang Zhang, chief editor of the journal ZOOTAXA, all the subject editors, managing editors and the staff of this journal. These people appreciate the importance of taxonomic research and provide authors an ideal platform to publish taxonomic studies. Ingi Agnarsson (University of Vermont, Burlington; Zoological Museum of the University of Puerto Rico, San Juan) commented an earlier draft of this paper and Peter Schwendinger, Yuri M. Marusik (Magadan) and two anonymous reviewers kindly provided helpful reviews. Cor Vink (Canterbury Museum, Christchurch) kindly improved the English and provided helpful comments.

References

