Descriptions of two new, cryptic species of *Metasiro* (Arachnida: Opiliones: Cyphophthalmi: Neogoveidae) from South Carolina, USA, including a discussion of mitochondrial mutation rates

RONALD M. CLOUSE1,2 & WARD C. WHEELER2

1Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA. E-mail: relroupe@email.uncc.edu

2Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA. E-mail: wheeler@amnh.org

Abstract

Specimens of *Metasiro* from its three known disjunct population centers in the southeastern US were examined and had a 769 bp fragment of the mitochondrial gene cytochrome *c* oxidase subunit I (COI) sequenced. These populations are located in the western panhandle of Florida and nearby areas of Georgia, in the Savannah River delta of South Carolina, and on Sassafras Mt. in South Carolina. This range extends over as much as 500 km, which is very large for a species of cyphophthalmid harvestmen and presents a degree of physical separation among populations such that we would expect them to actually be distinguishable species. We examined the morphology, including the spermatopositors of males, and sequences from 221 specimens. We found no discernible differences in the morphologies of specimens from the different populations, but corrected pairwise distances of COI were about 15% among the three population centers. We also analyzed COI data using a General Mixed Yule Coalescent (GMYC) model implemented in the R package SPLIT; with a single threshold, the most likely model had four species within *Metasiro*. Given this level of molecular divergence, the monophyly of the population haplotypes, and the number of exclusive COI nucleotide and amino acid differences distinguishing the populations, we here raise the Savannah River and Sassafras Mt. populations to species status: *M. savannahensis* sp. nov., and *M. sassafrasensis* sp. nov., respectively. This restricts *M. americanus* (Davis, 1933) to just the Lower Chattahoochee Watershed, which in this study includes populations along the Apalachicola River and around Florida Caverns State Park. GMYC models reconstructed the two main haplotype clades within *M. americanus* as different species, but they are not exclusive to different areas. We estimate COI percent divergence rates in certain cyphophthalmid groups and discuss problems with historical measures of this rate. We hypothesize that *Metasiro* began diversifying over 20 million years ago.

Key words: Sassafras Mountain, Savannah River, harvestmen, DNA taxonomy, barcoding

Introduction

Cyphophthalmid species typically have ranges of only a few kilometers and are distinguishable by subtle body proportions and genitalic differences, even when closely related (Giribet 2000; Giribet et al. 2012a). This feature appears to be a result of exceptionally poor dispersal abilities, and, when combined with their old age, allows them a unique role in testing hypotheses of historical landmass movements (see, for example, Boyer & Giribet 2007; Boyer et al. 2007b; Clouse & Giribet 2010; Giribet et al. 2012a; and Murienne et al. 2009). With an increase in cyphophthalmid sequence data, it has been possible to sort species with more confidence, as small differences in morphology and geographical location are usually accompanied by large numbers of molecular synapomorphies. In cases where specimens have been included in molecular phylogenies before a thorough morphological examination could be completed, sequence divergences have been used as a preliminary guide to species diversity (Clouse 2012).

In this context we investigated the strangely widespread US cyphophthalmid species *Metasiso americanus*, which lives in the western panhandle of Florida and nearby areas of Georgia, Sassafras Mountain in the Southern

http://dx.doi.org/10.11646/zootaxa.3814.2.2

http://zoobank.org/urn:lsid:zoobank.org:pub:185ED0AE-5571-4656-96E1-291E86FEB52D
W911NF-05-1-0271). We also appreciate the Department of Bioinformatics and Genomics, the Department of Mechanical Engineering and Engineering Science, and the Center for Optoelectronics and Optical Communications at UNC Charlotte for the support of multiuser facilities used to take the images presented here; special thanks for use of these facilities go to Professors Daniel Janies and Haitao Zhang. Confocal imaging was kindly done at the AMNH by Amanda White, and we also thank Estefanía Rodriguez for use of her compound microscope for other spermatopositor photographs. Collecting permits for Florida were facilitated by Tova Spector and Arthur Stiles, and for Savannah River National Wildlife Refuge by Chuck Hayes, to whom we are grateful. Dennis Chastain helped us find the *M. sassafrasensis* sp. nov., population on Sassafras Mountain, where we also received the assistance of Greg Lucas of the South Carolina Department of Natural Resources. Chris Hawthorne and Steve Cutshaw provided important information leading to productive collecting sites at Florida Caverns State Park. Additional assistance was provided by HaWook Song, Diane Sheridan, Mohammed Faiz, and Isabella Kappner.

References

http://dx.doi.org/10.1126/science.8503007

http://dx.doi.org/10.1098/rspb.1998.0568

http://dx.doi.org/10.1016/j.ode.2004.12.004

http://dx.doi.org/10.1111/j.1096-0031.2009.00282.x

http://dx.doi.org/10.1007/s00435-010-0110-z