New quill mites (Cheyletoidea: Syringophilidae) parasitizing the black-headed paradise-flycatcher *Terpsiphone rufiventer* (Passeriformes: Monarchidae) in Gabon

ELIZA GLOWSKA1,3 & BRIAN K. SCHMIDT2

1Department of Animal Morphology, Adam Mickiewicz University, Faculty of Biology, Umultowska 89, 61–614 Poznan, Poland
2Smithsonian Institution, Division of Birds, PO Box 37012, MRC 116, Washington, DC 20013-7012
3Corresponding author. E-mail: glowska@amu.edu.pl

Abstract

A new genus of quill mites (Cheyletoidea: Syringophilidae) and two new species *Pipicobia terpsiphoni* gen. nov. and sp. nov. and *Syringophiloidus furthi* sp. nov. parasitizing the black-headed paradise-flycatcher *Terpsiphone rufiventer* (Swainson) (Passeriformes: Monarchidae) in Gabon are described. Three species of the *Neopicobia* Skoracki, 2011 are moved to the newly established genus: *Pipicobia locustella* (Skoracki, Bochkov and Wauthy, 2004) comb. nov., *Pipicobia pyrrholaemus* (Skoracki and Glowska, 2008) comb. nov., and *Pipicobia glossopsitta* (Skoracki, Glowska and Sikora, 2008) comb. nov. Syringophilids are recorded on hosts of the family Monarchidae and in Gabon for the first time. A key to the genera of the subfamily Picobiinae is proposed.

Key words: Quill mites, Syringophilidae, *Pipicobia, Syringophiloidus*, monarchid birds, systematics

Introduction

Quill mites of the family Syringophilidae (Prostigmata: Cheyletoidea) are a group of bird permanent parasites including 59 genera and 314 species known from 438 bird species belonging to 92 families and 23 orders. The family is divided into two subfamilies: Syringophilinae Lavoipierre with 255 species grouped in 50 genera and Picobiinae Johnston and Kethley with 59 species belonging to nine genera. Under that biodiversity of mites known from almost all biogeographical regions, the Ethiopian region seems to be deeply neglected. Only 55 mite species from 70 host species have been recorded so far from this area (Fain *et al.* 2000; Skoracki & Hromada 2013; Skoracki *et al.* 2011, 2012, 2013 a,b,c, 2014).

The monarch flycatchers (Passeriformes: Monarchidae) are a family of birds represented by 94 species distributed throughout the south-east Asia, Australasia, many of Pacific islands and sub-Saharan Africa, whilst occurrence of the black-headed paradise-flycatcher *Terpsiphone rufiventer* (Swainson) is restricted to the West and Central Africa. Syringophilids have never been recorded from species belonging to this family.

In this paper we propose a new genus of quill mites (Cheyletoidea: Syringophilidae) *Pipicobia gen. nov.* and describe two new species *Pipicobia terpsiphoni* sp. nov. and *Syringophiloidus furthi* sp. nov. parasitizing the black-headed paradise-flycatcher *Terpsiphone rufiventer* (Swainson) (Passeriformes: Monarchidae) in Gabon. Three species of the *Neopicobia* Skoracki, 2011 are moved to the newly established genus, *Pipicobia locustella* (Skoracki, Bochkov and Wauthy, 2004) comb. nov., *Pipicobia pyrrholaemus* (Skoracki and Glowska, 2008) comb. nov., and *Pipicobia glossopsitta* (Skoracki, Glowska and Sikora, 2008) comb. nov. We expand a host range of this mite group on a new avian family Monarchidae and give the first records of syringophilids in Gabon. Additionally, we propose a key to the genera of subfamily Picobiinae.
Key to the genera of the subfamily Picobiinae (females)

1. Opistosomal lobes present. ... Calamincola Casto
 - Opistosomal lobes absent .. 2
2. Hypostomal apex tapering, solenidion phi on tibia I absent, 1–2 pairs of ps setae. ... 3
 - Hypostomal apex of various shaped, solenidion phi on tibia I present, two pairs of ps setae ... 6
3. Two pairs of ps setae present, thorn-like protuberances on apodemes I absent. ... 4
 - Single pair of ps setae present, thorn-like protuberances on apodemes I present .. 5
4. Genital setae absent. ... Neopicobia Skoracki
 - One pair of genital setae present ... Rafapicobia Skoracki
5. Genital setae absent. ... Charadriineopicobia Skoracki, Spicer and O'Connor
 - One pair of genital setae present ... Pipicobia gen. nov.
6. One pair of genital setae present ... Calamincola Casto
 - Genital setae absent ... 9
7. Setae vi and ve situated at same transverse level or vi posterior to ve ... Picobia Haller
 - Setae vi situated anterior to ve ... 8
8. Propodonotal shield entire, pygidial shield present ... Lawrencipicobia Skoracki and Hromada
 - Propodonotal shield represented by 2 narrow lateral sclerites with or without central part, pygidial shield absent Columbiphilus Kivganov et Sharafat
9. Setae vi situated anterior to ve, hypostomal apex with shoulders, thorn-like protuberances on apodemes I absent Gunabopicobia Skoracki and Hromada
 - Setae vi situated posterior to ve, hypostomal apex rounded, thorn-like protuberance on apodemes I present Pseudopicobia Skoracki, Seibek and Sikora

Acknowledgments

We are very grateful to the staff of the Department of Vertebrate Zoology, Division of Birds, USNM for making the collection of feathers available for this study. The collection of the bird specimens was supported by the Smithsonian Institution Monitoring and Assessment of Biodiversity (SI-MAB) programme, the Shell Foundation, Shell Gabon, and the Government of Gabon.

References

http://dx.doi.org/10.1080/03014220809510125

http://dx.doi.org/10.1163/187631204788912409

