Scanning electron microscopy of eggs of Georgecraigius fluviatilis (Lutz) (Diptera: Culicidae, Aedini)

JULIANA SOARES SARMENTO1,2, CARLOS BRISOLA MARCONDES3, JERONIMO ALENCAR4, ELIANA MEDEIROS OLIVEIRA5, CECILIA FERREIRA DE MELLO4, VINÍCIOS FERREIRA DE FREITAS3 & JACENIR SANTOS-MALLET3

1 Sector of Medical and Forensic Entomology, Laboratory of Vectors of Leishmaniases, Oswaldo Cruz Institute (Fiocruz), Av. Brasil 4365, CEP 21040-360, Manguinhos, Rio de Janeiro, Brazil. E-mail: jsarmento1985@yahoo.com.br, jacenir@ioc.fiocruz.br
2 Postgraduate Program on Animal Biology, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
3 Department of Microbiology, Immunology and Parasitology, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil. E-mail: cbrisolamarcondes@gmail.com, the.freitas7@gmail.com
4 Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Av. Brasil 4365, CEP 21040-360, Manguinhos, Rio de Janeiro, Brazil. E-mail: jalencar@ioc.fiocruz.br, cecilia.mello@ioc.fiocruz.br
5 Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil. E-mail: eliana@lcme.ufsc.br

Abstract

Scanning Electron Microscopy was used to describe the eggs of Georgecraigius fluviatilis (Lutz). Length is 722.8±39.6 µm and width is 177.1±9.8 µm. Diameter of the micropylar disk, surrounded by an irregular flattened collar, is 28 µm. The outer chorionic sculpture consists of cells of irregular shapes, containing tubercles with pitted surface. In the ventral region, tubercles of several diameters are irregularly distributed in chorionic cells, while in the dorsal region one larger tubercle is surrounded by several smaller ones. The eggs appear to lack structures for adhesion, certainly unnecessary due to the habit of laying eggs separately on water surfaces.

Key words: Egg, Ultrastructure, Morphology

Introduction

The study of egg morphology is useful for the identification of material from aquatic habitats. Georgecraigius fluviatilis (Lutz) (=Aedes fluviatilis) is widely distributed from southern Mexico to northern (Zavortink 1972, Pecor et al. 2002) and western Argentina (Almirón et al. 1996), and is also recorded in two southernmost Brazilian states, Rio Grande do Sul (Cardoso et al. 2005) and Santa Catarina (Marcondes et al. 2006).

Immature forms of Gc. fluviatilis have been found mostly in rock crevices situated near or in rivers (Forattini 1965, Marcondes et al. 2006). They can be found in artificial containers, like tyres and flower pots in cemeteries (Lopes 2002), sometimes with Stegomyia aegypti (Linnaeus) (=Aedes aegypti) (Lopes et al. 1993), which seems to displace them (Lopes 2002).

When the eggs of several groups of mosquitoes have finally been described, they can also be used in phylogenetic analyses. Due to the small number of eggs currently described, Motta et al. (2007) did not include egg characteristics in their phylogenetic analysis of Wyeomyia (Sabethini). Additionally, in Reinert et al.’s (2009) phylogenetic analysis of the Aedini, only four morphological characters of the 336 were from eggs, which were unknown for many species.

Georgecraigius fluviatilis seems to prefer biting birds (Consoli & Williams 1981), and in a study utilizing several baits (human, chicken, lizard and horse), horses seemed to be more attractive (Neves & Silva 1974), but the number of collected mosquitoes was very small.

The species is a very good experimental vector for Plasmodium gallinaceum (Camargo et al. 1983) and has been frequently utilized for experimental studies (e.g., Camargo et al. 1983, Rocha et al. 2004), having been shown to be a
Georgecraigius, Gc. epactius and Gc. atropalpus, that are distributed in Central and North America. Both have had their exochorial surface briefly described and illustrated (Burst, 1974), showing a quite different pattern of distribution of tubercles and cells compared to Gc. fluviatilis. Egg surface was added to crossings among species on this genus for the definition of species and subspecies, separating Gc. epactius from Gc. atropalpus and synonymizing Ae. atropalpus nielseni O’Meara & Craig Jr. and Ae. atropalpus pericharis Dyar with Gc. epactius (Burst 1974).

Munstermann (1980) observed enzyme variation among populations of Gc. epactius and Gc. atropalpus, and studies on their eggs and the eggs of Gc. fluviatilis could be very useful. Zavortink (1972) cited differences in male genitalia of Gc. fluviatilis, comparing mosquitoes from the Guianas, extreme south of Brazil (in reality, he examined material from states in the south-east, and not from any of three states of southern Brazil) and adjacent northern Argentina to those from other regions. Franca, state of São Paulo, south-east of Brazil, is the type locality of Gc. fluviatilis. Horsfal et al. (1970) cited variations between eggs of Oc. sticticus (Meigen) (=Aedes sticticus) and Aedimorphus vexans (Meigen) (=Aedes vexans) collected in different localities in North America. It would be advisable to check the variation in widely distributed species, like Gc. fluviatilis, utilizing egg characters as a tool for the characterization of possible species complexes.

Georgecraigius fluviatilis is easily reared in the laboratory (Consoli & Williams 1976, 1981), having been frequently used for studies of bird malaria, and it would be relatively easy to get eggs from several regions for comparative studies.

Acknowledgements

We acknowledge the financial support by Fundação Carlos Chagas de Amparo à Pesquisa no Estado do Rio de Janeiro - FAPERJ (E26-103.035/2012 and 112.076/2012) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (475256/2011-5). To Rudolf Barth Electron Microscopy Platform for allowing the use of the scanning electron microscope. Dr. Ralph Harbach (NHM, London) emphasized some pertinent references. Dr. Gustavo Rossi (CEPAVE, Buenos Aires) sent useful information on Culex eggs. The authors also thanks Nicolas and Raquel Locke as president and vice president, and Jorge Bizarro as research coordinator of REGUA, for the facilities granted for carrying out the studied.

References


