Hamacantha (Hamacantha) boomerang sp. nov. from deep-sea coral mounds at Campos Basin, SW Atlantic, and redescription of H. (H.) Schmidtii (Carter, 1882) (Hamacanthisdae, Poecilosclerida, Demospongiae)

EDUARDO HAJDU1 & CRISTIANA CASTELLO-BRANCO1,2

1 Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, 20940-040, Rio de Janeiro, RJ, Brazil. E-mail: eduardo.hajdu@gmail.com; cristianacbranco@gmail.com
2 Laboratório de Biologia de Porifera, Departamento de Zoologia, Instituto de Biologia, Universidade Federal da Bahia, Campus de Ondina, 40170-290, Salvador, BA, Brazil

Abstract

There are 22 species of Hamacantha registered from all over the world, and frequently from deep-waters, only two of which had previously been reported from the SW Atlantic. Here we describe a third species for this area, Hamacantha (H.) boomerang sp. nov., collected from deep-sea coral mounds at Campos Basin (off Rio de Janeiro state). We found ox- eas 271–630 µm long, diancistras in three size classes, 125–155, 45–69 and 20–29 µm, and toxas, 58–82 µm. This is the only Hamacantha combining oxeas and toxas, but the latter are very rare. The species approaches the Caribbean H. (H.) Schmidtii (Carter, 1882), where we observed oxeas 390–495 µm long, and diancistras in three size classes, 109–124, 44–54 and 26–41 µm, however toxas appear to be absent. Both species are clearly distinct by micrometric values, as well as the overall morphology of the smaller diancistras, distinct from the intermediate category in the new species, but quite similar in H. (H.) Schmidtii. Hamacantha (Vomerula) falcula approaches the new species very closely in microsclere dimensions and morphology, but is set apart by its styloid and smaller megascleres.

Key words: taxonomy, Brazil, Florida, continental slope, microscleres

Introduction

Important new data are being generated on Brazilian deep-sea sponges in response to two main driving forces: 1, the nation’s need to establish sustainable catches of life resources in its Exclusive Economic Zone (Noronha 2006), and 2, a growing pressure on offshore oil and gas companies by environmental authorities requiring baseline information and impact assessment of their activities (Garcia 2003). This scenario permitted the discovery of numerous deep-sea sponge species from off S-SE Brazil, of which 20 were published in the last decade, and another similar number is in the process of being described for publication. These stemmed from dredging, trawling, and more recently, ROV collections, as is the case of the new species reported here.

There are 22 species of Hamacantha described from all over the world, mostly from deep-waters (van Soest et al. 2013). Only two species have previously been reported from the SW Atlantic, namely H. (Vomerula) esperioides (Ridley & Dendy, 1886) and H. (Vomerula) microxifera Lopes & Hajdu, 2004. Here we describe a second species for this area, Hamacantha (H.) boomerang sp. nov., and redescribe H. (H.) Schmidtii (Carter, 1882), based on re-examination of a type slide at the Natural History Museum, London. This is the first account of the morphology and micrometry of its spicule set, as earlier authors went only as far as establishing the number of spicule categories present (e.g. Stephens 1921).

Material and methods

The single specimen of the new species was studied using methodology detailed in Hajdu et al. (2011), except that
Acknowledgements

CENPES (PETROBRAS’ Research and Development Center) and Prof. Dr. Ana Cláudia Brasil (Universidade Federal Rural do Rio de Janeiro) are thanked for granting us access to the specimen studied, obtained by project ECOPROF. We owe special thanks to Rob van Soest (Naturalis Biodiversity Center, Leiden, The Netherlands) for valuable suggestions and a translation of Schmidt’s description of *Desmacella johnsoni*. In The Natural History Museum (London, United Kingdom) we were excellently assisted by Clare Valentine, who retrieved the microscopic preparation of the holotype of *Desmacella johnsoni* for EH in the early 1990’s, when Dr. Dave Roberts kindly permitted access to his microscope and complementary photographic equipment thus allowing the making of images shown here on Fig. 2, and by Emma Sherlock for her efforts to retrieve this holotype in 2013, alas unsuccessfully. Dr. Mariana de S. Carvalho and Thábata Verlã are acknowledged for helping in the early stages of identification and description of the new species. Authors are thankful also to M.Sc. Amanda G. da Veiga and Beatriz C.A. Cordeiro for SEM operation at the Center for Scanning Electron Microscopy of Museu Nacional/UFRJ. The establishment of this Center was made possible by a grant from CENPES/PETROBRAS (Rio de Janeiro, Brazil) and ANP (Brazil), and is part of the company’s Thematic Network for Marine Environmental Monitoring. CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) are deeply thanked for the provision of grants and/or fellowships.

References

http://dx.doi.org/10.1080/00222938209459039
http://dx.doi.org/10.1111/j.1096-3642.1873.tb00560.x
http://dx.doi.org/10.1080/00222937208696616
http://dx.doi.org/10.1017/s0025315400408860h
http://dx.doi.org/10.1080/00222938609459998


http://dx.doi.org/10.1080/00222938509459901


http://dx.doi.org/10.5962/bhl.title.2169

Topsent, E. (1928) Spongiaires de l’Atlantique et de la Méditerranée provenant des croisières du Prince Albert ler de Monaco. Résultats des campagnes scientifiques accomplies par le Prince Albert I. Monaco, 74, 1–376, pls I–XI.