A new frog species (Myobatrachidae: Uperoleia) from the Northern Deserts region of Australia, with a redescription of U. trachyderma

RENEE A. CATULLO1,3, PAUL DOUGHTY2 & J. SCOTT KEOGH1

1Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, ACT, 0200 AUSTRALIA
2Department of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool WA 6106, AUSTRALIA.
3Corresponding author. E-mail: renee.catullo@anu.edu.au

Abstract

The frog genus Uperoleia (Myobatrachidae) is species rich, with the greatest diversity in the northern monsoonal region of Australia. Due in part to their small body size, conservative morphology and distribution in diverse habitats, the genus is likely to harbor cryptic species. A recent study (Catullo et al. 2013) assessed region-wide genetic, acoustic and phenotypic variation within four species in northern Australia. Catullo et al. (2013) presented multiple lines of evidence that the widespread U. trachyderma comprises distinct allopatric western and eastern lineages within the Northern Deserts bioregion of Australia. Here we formally describe the western lineage as U. stridera sp. nov. and redescribe the eastern (type) clade as U. trachyderma. The new species can be distinguished from U. trachyderma by fewer pulses per call, a faster pulse rate, and the lack of scattered orange to red flecks on the dorsum. The description of U. stridera sp. nov. brings the number of Uperoleia species to 28, by far the largest genus in the Myobatrachidae, and further highlights the Australian monsoonal tropics as a region of high endemism.

Key words: Australian Monsoonal Tropics, advertisement call, cryptic species, Uperoleia stridera sp. nov., Uperoleia trachyderma

Introduction

The frog genus Uperoleia (Myobatrachidae) is represented in Australia by 27 currently recognized species, with the majority of species discovery and description occurring in the last few decades. A significant review of Uperoleia by Tyler et al. (1981) described nine new species, followed by the description U. aspera Tyler, Davies & Martin 1981, U. trachyderma Tyler, Davies & Martin 1981b, and U. glandulosa Davies, Mahony, and Roberts 1985. Six more species were described in 1986 (Davies et al.; Davies & Littlejohn). Following almost two decades between the description of new species, the past few years have seen the description of a number of species from the poorly explored monsoonal tropics or arid regions of Australia, including U. daviesae Young, Tyler & Kent 2005 from the Top End, U. micra Doughty & Roberts 2008 from the north-west Kimberley, and U. saxatilis Catullo, Doughty, Roberts, & Keogh 2011 from the Pilbara. The northern monsoonal tropics region has 17 Uperoleia species, representing almost two-thirds of Uperoleia diversity. Another 10 species occur in the eastern mesic region and the arid zone. The monsoonal tropics are a geologically and climatically diverse region, characterized by a wet summer associated with cyclonic activity, and a dry winter season (Bowman et al. 2010). Due to a low population density, little infrastructure, and difficult access during the wet season, this region has been poorly explored.

Catullo et al. (2013) investigated genetic, phenotypic, and acoustic variation of the U. lithomoda/U. trachyderma/U. minima/U. mimula species complex from across monsoonal northern Australia. Frogs of this species complex represent a monophyletic group that also included five other species with a sharp “click” as a call (see also Catullo et al. 2011). This study concluded that multiple lines of evidence supported the existence of two distinct lineages that occur in the western and eastern Northern Deserts bioregion within currently described U. trachyderma. While there was some mitochondrial incongruence, the acoustic, nDNA, and morphological
Acknowledgements

We thank Sandra Binning for statistical advice, the Australian National Wildlife Collection and Robert Palmer in particular for providing bench space for morphological work, M. Whitehead, S. Reynolds, P. Oliver, and D. Moore for assistance in fieldwork, and C. Stevenson, B. Maryan, and G. Dally for access to tissues and specimens. This work was funded by the Hermon Slade Foundation, the Australian Research Council, the Australian National University, and Alcoa of Australia.

References


http://dx.doi.org/10.1111/j.1365-2699.2009.02210.x


http://dx.doi.org/10.1111/jbi.12230


http://dx.doi.org/10.1111/j.1558-5646.2010.00993.x


http://dx.doi.org/10.1086/662164


http://dx.doi.org/10.1016/s0006-3207(02)00148-9
http://dx.doi.org/10.1071/mu969169

http://dx.doi.org/10.1016/j.ympev.2010.11.025

http://dx.doi.org/10.1016/j.biocon.2010.06.017

http://dx.doi.org/10.1111/j.1442-9993.2009.02040.x

http://dx.doi.org/10.1111/j.1558-5646.2010.01211.x

http://dx.doi.org/10.1071/ajzs079


http://dx.doi.org/10.1046/j.1442-9993.2002.01182.x

http://dx.doi.org/10.1016/s0006-3207(03)00231-3

http://dx.doi.org/10.1071/rj03013

http://dx.doi.org/10.1670/77-05a.1