First zoal stage of the partner shrimp Periclimenes paivai Chace, with remarks on the genus Periclimenes O.G. Costa (Caridea, Palaemonidae)

JOÃO A.F. PANTALEÃO¹, MARIANA TEROSSEI, ROGÉRIO C. COSTA¹ & FERNANDO L. MANTELATTO²3

¹Laboratory of Biology and Ecology of Marine and Freshwater Shrimps (LABCAM), Faculty of Sciences (FC), São Paulo State University (UNESP) Brazil. E-mail: pantaleao@ibb.unesp.br, rccosta@fc.unesp.br
²Laboratory of Bioecology and Crustacean Systematics (LBSC), Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Brazil. E-mail: mterossi@usp.br, flmantel@usp.br
³Corresponding author

Abstract

The morphology of the first zoal stage of Periclimenes paivai Chace is described and illustrated for the first time. Larvae were obtained from three females with embryos, caught in the type locality (Cananéia, São Paulo state, Brazil). The morphological characters are detailed and compared with all previous descriptions of larvae in the genus (P. amethysteus, P. brevicarpalis, P. diversipes, P. pandionis, P. sagittifer and P. soror). The Zoeae I of Periclimenes species are very similar, but P. paivai can be separated from the other six species by means of five characteristics: 8 plumose setae on the inner margin of the antennal scale, one spine on the endopod of the maxillule, one cuspidate seta on the basal endite of the maxillule, one plumose seta on the single coxal endite of the maxilla, and one plumose seta on the endopod of the maxilla.

Key words: Crustacea, Decapoda, larval development, Pontoniinae, zoea

Introduction

The palaemonid genus Periclimenes O.G. Costa is composed by over 152 species occurring in tropical and subtropical seas of the world. This is the fifth most speciose genus of caridean shrimps, after Caridina H. Milne Edwards (Athyidae, 290 species), Alpheus Fabricius (Alpheidae, 286), Macrobrachium Spence Bate (Palaemonidae, 243) and Synalpheus Spence Bate (Alpheidae, 159) (see Chace & Bruce 1993; De Grave & Fransen 2011 for revision).

The monophyletic status of these mega-genera has been discussed in recent years, and this ranking may substantially alter with phylogenetic studies (De Grave & Fransen 2011; Kou et al. 2013). In some cases the analysis of the larval morphology is key information, and can help to solve unclear classification and specific problems (Pohle & Marques 2000).

For the speciose genus Periclimenes, until now the first larval stage has been described for only six species: Periclimenes amethysteus (Risso), P. brevicarpalis (Schenkel), P. diversipes Kemp, P. pandionis Holthuis, P. sagittifer (Norman), and P. soror Nobili. The existing descriptions of the first larvae of five species [P. agag Kemp by Gurney (1938), P. americanus Kingsley by Kurata (1970), P. calmani Tattersall by Gurney (1927), P. grandis Stimpson by Gurney (1938) and P. indices Kemp by Menon (1948)] were not included in our tables because they were moved to different genera and/or were synonymized, and are not now considered members of the genus Periclimenes (see De Grave & Fransen 2011). However, a brief comparison of the larval morphology of these species with our results is performed.

On the Brazilian coast, Periclimenes is represented by four species: P. guarapari De Grave, P. magnus Holthuis, P. paivai Chace and P. yucatanicus (Ives) (Vieira et al. 2012). Periclimenes paivai is endemic to the western Atlantic coast, and is restricted to shallow waters of Brazil from Rio de Janeiro to Santa Catarina (Pantaleão et al. in preparation). In general, shrimps of the subfamily Pontoniinae are commonly found associated
distinct rostrum; a smooth abdomen; and a telson posterior margin nearly straight or with a small median notch; the first two pereiopods present as biramous buds; and the maxillipeds all developed, with four plumose setae on the posterior end of the exopod. However, it is important to remember that there are only seven zoea I known of a total of 152 species, and generalizations should be made cautiously.

For the species in which the first zoea is known, and which have been recently relocated from the genus *Periclimenes* (*P. agag*, *P. americanus*, *P. calmani*, *P. grandis* and *P. indicus*), we found some differences in the patterns of the morphological characteristics, from those in species of *Periclimenes*: the exopod of the first maxillipod of *P. calmani* may have only three setae, and this species have a pair of lateral spines on the fifth segment of abdomen (Gurney 1927); two species (*P. calmani* and *P. indicus*) have three pereiopod buds (Gurney 1927; Menon 1948), while all *Periclimenes* species have a maximum of two (Table 2); *P. americanus* shows six segments on the antennal scale (Kurata 1970), while the others show a maximum of five (Table 2).

Apart from these differences, is possible to find some similarities between these two groups of species. *Periclimenes calmani* shares a 4-segmented endopod of the second maxilliped and a bilobed endopod of the maxilla with *P. soror* (Gurney 1927; Wear 1976); and all species which have been relocated of the genus have some characteristics (the number of setae on the antennal scale, the number of setae at the posterior end of the exopod of the maxillipeds, and one plumose setae plus one spine on the endopod of antenna) (Gurney 1927, 1938; Menon 1948; Kurata 1970) in common with the majority of *Periclimenes* species (Table 2). One possible explanation is that differences probably appear in subsequent stages of development.

As illustrated by this review, there is a clear need for further studies on the larval morphology of the genus *Periclimenes* and related genera, which would enable a clearer understanding of the phylogenetic relationships of the group in the future. Furthermore, the combination of a morphological analysis, including all zoeal stages if possible, with a molecular analysis could expand our understanding of the evolution of the genus.

Acknowledgments

Support for this study was provided by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (Temático Biotas 2010/50188-8; Coleções Científicas 2009/54931-0) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq to FLM (301359/2007-5; 473050/2007-2; 302748/2010-5; 471011/2011-8) and to RCC (2011/11901-3). JAFP thanks CNPq for the award of a master’s scholarship (130837/2011-3). MT thanks FAPESP for an ongoing postdoctoral fellowship (2011/11901-3). Thanks are due to all members of the Laboratory of Bioecology and Crustacean Systematics (LBSC) of FCLRP/USP and the Laboratory of Biology and Ecology of Marine and Freshwater shrimps (LABCAM) of FC/UNESP for their help during field work, to Dr. Janet Reid (JWR Associates) for providing the English review service, and to anonymous reviewer for suggestions and contributions toward improving this article.

References

http://dx.doi.org/10.1163/193724094x00759

http://dx.doi.org/10.1163/156854072x00192


http://dx.doi.org/10.1163/156854069x00295

http://dx.doi.org/10.5479/si.00810282.543

http://dx.doi.org/10.1080/07924259.1998.9652627


