Two new species of Gaeolaelaps (Acari: Laelapidae) from Iran

ALIREZA NEMATI & MASTANEH MOHSENI
Plant Protection Department, Agricultural College, Shahrekord University, Shahrekord, Iran. E-mail nemati.alireza@agr.sku.ac.ir, alireza.nemati@gmail.com

Abstract

This paper reports on two new species of mites of the genus Gaeolaelaps in soil from Iran, G. farajii sp. nov., and G. orbiculatus sp. nov. A key to the species of Gaeolaelaps with short peritremes is presented.

Key words: Taxonomy, soil, mite, chaetotaxy, Iran

Introduction

The family Laelapidae Berlese includes a multitude of morphologically and behaviourally diverse mites that are free-living or associated with arthropods, mammals and birds (Strong & Halliday, 1994; Faraji & Halliday, 2009; Lindquist et al., 2009). Hypotheses concerning the evolutionary history of this family and its relatives are minimally developed and the classification of the group is consequently inadequate (Casanueva, 1993). Gaeolaelaps is one of the largest genera of laelapid mites (Kavianpour et al., 2013). Over 80 species are currently included in the genus (Evans & Till, 1966; Karg, 1979, 1982, 1993, 2006; Beaulieu, 2009; Walter & Moser, 2010; Trach, 2012; Kavianpour et al., 2013; Nemati & Kavianpour, 2013), 14 of which have been recorded in Iran (Faraji et al., 2008; Kavianpour et al., 2013; Nemati & Kavianpour, 2013). Two species of this genus, G. jondishapouri Nemati & Kavianpour, 2013 and G. iranicus Kavianpour et al., 2013 have been described from soil and litter in Iran (Nemati & Kavianpour, 2013; Kavianpour et al., 2013). In this paper we describe two new species of Gaeolaelaps that have the unusual property of short peritremes, and provide a world-wide to the species that share this character state.

Materials and methods

Mites were collected from soil and litter samples in Chaharmahal Va Bakhtiari and Khuzestan provinces in Iran. Mites were extracted from samples using Berlese funnels, cleared in lactic acid at 55 °C and slide-mounted in Hoyer’s medium. Line drawings were made by use of a drawing tube and figures were prepared with Corel X-draw software, based on the scanned line drawings. Measurements of structures expressed as minimum-maximum ranges in micrometres (µm). The dorsal setal notation follows that of Lindquist & Evans (1965). Leg setal notation and chaetotactic formulae are based on Evans (1963). Length of the dorsal shield is the distance from its anteromedian edge anterior to the bases of setae j1 to its posteromedian edge posterior to bases of setae Z5; width of the dorsal shield was measured at its widest part; length of the sternal shield was measured along the midline from its anterior edge to its posterior margin; its width was measured between coxae II (widest point) and slightly above the insertion of st2 (narrowest point). The length of the anal shield is in the midline from the anterior margin to the posterior edge of the cribrum, and its width was measured at the widest point. Setae were measured from their insertions to their tips, and distance between setae as the distance between their insertions. Lengths of leg segments were measured dorsomedially, and tarsi were measured without the stalk and pretarsus. The holotypes and some of the paratypes are deposited in the Acarological Laboratory, Department of Plant Protection,
Dorsal shield with 39 pairs of setae; anal shield nearly rounded and wider than long; genital shield not as above, length/width = 3:1; dorsal setae nearly equal in length (28–33 µm); idiosoma 400–480 µm long, 180–220 µm wide.

- Dorsal shield with 39 pairs of setae; anal shield nearly rounded and wider than long; genital shield not as above, length/width = 3:1; dorsal setae nearly equal in length (28–33 µm); idiosoma 400–480 µm long, 180–220 µm wide.

- Dorsal shield with 37 pairs of setae.

- Dorsal shield with 38–39 pairs of setae.

- Podonotum with 19 (lacks r_3 and r_5) and opisthonotum with 18 pairs of setae (R_5 located on dorsal shield between S_4–S_5); without R series on lateral cuticle; idiosoma 420–460 µm.

- Podonotum with 20 or 22 pairs of setae.

- Podonotum with 19 (lacks z_2, s_1 and r_3) and opisthonotum with 18 pairs of setae (R_5 located on dorsal shield between S_4–S_5); without R series on lateral cuticle; idiosoma 420–460 µm.

- Podonotum with 20 (lacks s_1–s_3 and has r_2–r_5) and opisthonotum with 17 pairs of setae (with P_{x_1}–P_{x_2}); opisthonotum wider than podonotum; with R_{1}–R_2 and R_4 on lateral cuticle; idiosoma 350–360 µm.

- Podonotum with 22 pairs of setae, with complete s-series; opisthonotum with 15 pairs of setae (without P_{x_1}–P_{x_2}); podonotum wider than opisthonotum; idiosoma 483–540 µm.

8. Dorsal shield with 38 pairs of setae (without P_{x_3}); dorsal shield smooth; without exopodal plates; with very thin peritrematal plate, poststigmatic plate narrow and expanded posteriorly to surround coxa IV.

9. Genital shield extending close to anal shield, length/width nearly 3:1; iv_2 slit-like; J_2 located well lateral. J_1 .

- Genital shield not extending close to anal shield, length/width nearly 2:1; iv_2 pore-like; J_2 located behind of J_1.

10. Genital shield as wide as anal shield; z_3 absent; with r_2–r_5; margin of epistome like a pointed roof and serrate, Z_5= 45–52 µm; idiosoma 650–670 µm.

- Genital shield distinctly wider than anal shield, z_3 present; with r_2–r_5; margin of epistome arcuated and fine serrate, Z_5= 50–56 µm; idiosoma 660–720 µm.

11. With one pair of z-setae on podonotum, between z_4 and z_5.

- Without z-setae on podonotum, between z_4 and z_5.

12. Dorsal shield setae long enough to reach past the base of next posterior seta, the length of j_5 is longer than distance between j_5 and j_6, exterior margin of post-stigmatic plate with deep incision, sternal setae longer enough to reach to the base of the next.

- Dorsal shield seta shorter, central opisthonotal setae short, sometimes reaching base of next posterior seta but never past it, the length of j_5 is shorter than distance between j_5 and j_6, sternal setae shorter and not reach to the base of next.

13. Pulp apotele 3-tined.

- Pulp apotele 2-tined.

- Lateral margins of genital shield not parallel, the widest area of genital shield located behind genital setae.

15. Surface of genital and sternal shields smooth; sternal shield with no defined anterior margin; the length of anal shield is 1.5 times as its width.

- Surface of genital shield with polygonal reticulation; sternal shields reticulated in lateral surfaces; sternal shield with well defined anterior margin; anal shield nearly as long as wide.

16. Genital shield with scale-like reticulation, the distance between j_5–j_6 = 1.5 the length of j_5, Z_5 as long as other dorsal setae; setae s_4 located in soft cuticle.

- Genital shield with polygonal reticulation, the distance between j_5–j_6 is thrice the length of j_5, Z_5 longer than other dorsal setae; setae s_4 located on minute platelets.

Acknowledgment

This research was supported by a grant (89003738) sponsored by the Iran National Science Foundation (INSF). We are very grateful to INSF for financial support. We are also grateful to Dr. Bruce Halliday and Dr. Farid Faraji and an anonymous reviewer for their valuable comments and advice.

References

http://dx.doi.org/10.1111/j.1440-6055.1994.tb00927.x

http://dx.doi.org/10.1051/acarologia/20122045

http://dx.doi.org/10.1080/01647954.2010.481263