The taxonomic position of *Tonkinomys daovantieni* (Rodentia: Muridae) based on karyological and molecular data

ALEXANDER E. BALAKIREV1,2, VLADIMIR V. ANISKIN2, TRAN QUANG TIEN1 & VIACHESLAV V. ROZHNOV1,2
1Joint Vietnam-Russian Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam. E-mail: alexbalakirev@mail.ru
2A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow 119071, Russia. E-mail: rozhnov.v@gmail.com

Abstract

Tonkinomys daovantieni was recently described from Northern Vietnam, but very sparse information exists for the taxon. We report for the first time the karyotype of this species and investigate its phylogenetic position in the *Dacnomys* division using both mitochondrial and nuclear genetic data. The diploid chromosome number of the species is 2n=44. This chromosomal set consists of one submetacentric pair, one metacentric pair, and nineteen pairs of subtelocentric/acrocentric autosomes progressively decreasing in size. The X chromosome is submetacentric and approximately equal in size to the largest subtelocentric autosome. The Y chromosome is metacentric and equal in size to the smallest pair of autosomes. The phylogenetic reconstruction based on the Cyt b COI and GHR genes reveals that *Saxatilomys paulinae*, a species distributed in the karst formations of the Lao PDR, is the closest relative to *T. daovantieni*. These two taxa are similar not only in a number of morphological characters, but also in their major ecological preferences (both are petrophylic species associated with limestone karst formations). Based on our data, we can conclude that the similarities among the ecological adaptations, natural conditions and habitat preferences of these species are a reflection of their phylogenetic relationship.

Key words: limestone rats, Southeast Asia, Vietnam, taxonomy, molecular phylogeny, karyotype

Introduction

The monotypic genus *Tonkinomys* Musser, Lunde & Nguyen 2006, comprising the species *Tonkinomys daovantieni* Musser, Lunde & Nguyen 2006, was first described from the forested tower karst formations of the Huu Lien Nature Reserve of north-eastern Vietnam (Musser et al. 2006). Based on its morphological peculiarities, this species was classified as a member of this *Dacnomys* division of the tribe Rattini. According to Musser & Carleton (2005), the division includes four Indo-Sundaic genera (*Dacnomys Thomas*, *Niviventer Marshall*, *Leopoldamys Ellerman*, and *Chiromyus Thomas*), the Sri Lankan endemic *Srîlankanamis Musser*, and the Philippine genus *Anonymomys Musser*. The composition of the *Dacnomys* division was recently subjected to a taxonomic revision based on molecular data (Balakirev et al. 2011, 2012, 2013) and it was demonstrated that the genus *Saxatilomys* Musser (Musser et al. 2005) should be considered an additional member of the *Dacnomys* division. It was also discovered that *Srîlankanamis* should be excluded from the *Dacnomys* division and placed instead in the *Rattus* division (Buzan et al. 2011, Balakirev et al. 2012). Until the present study, no molecular or chromosomal data have been available for *Tonkinomys*, and the species was known only from its original morphological description.

Musser et al. (2006), when describing the new taxon, stated that the phylogenetic position of *Tonkinomys* with respect to *Leopoldamys*, *Niviventer*, and *Saxatilomys*, the three extant genera with morphologies most similar to that of *Tonkinomys* was unresolved; the differences between *Tonkinomys daovantieni* and the species of *Leopoldamys* and *Niviventer* reflected a combination of primitive and derived features. The pelage coloration, as well as the tail shape and its length relative to the length of head and the body in *Leopoldamys* and *Niviventer*, are in contrast with those of *Tonkinomys*. *Tonkinomys* and *Saxatilomys* display a series of common morphological
The monophyly for the *Saxatilomys/Tonkinomys* clade, along with its clear morphological distinctiveness, provide strong support for its phylogenetic relationship, and the intergroup genetic distances of 0.1363–0.1455 for *Cytb* and 0.1130–0.1179 for *COI* are high enough to indicate generic specificity in agreement with the genetic species conception (Bready & Baker, 2001, Baker & Bready, 2006). These genera undoubtedly belong to an original phylogenetic clade within the *Dacnomys* division (comprising the *Dacnomys*, *Leopoldamys* and *Niviventer/Chiromyiscus* genera). Although, the basal tree topology of the *Dacnomys* division remains unresolved, the data reported into present study and in Balakirev et al. (2012, 2013) indicate that *Saxatilomys* and *Tonkinomys* genera are more closely related to each other than to other members of the division. Similarly, the *Leopoldamys* and *Dacnomys* genera as well as the *Chiromyiscus* and *Niviventer* genera (Balakirev et al. 2012, 2013) compose another pairs of most closely related taxa. It should also be noted also that the position of *Maxomys* clade, which is usually regarded as an outgroup to the *Dacnomys* division (as a member of a separate *Maxomys* division, Musser & Carleton 1993, 2005) may be in need of revision. A special survey is needed to investigate this question in details, because of the complex composition of the genus *Maxomys*.

Acknowledgments

This study was made with the support of the Joint Vietnam-Russian Tropical Research and Technological Centre, South Division, Ho Chi Minh City, Vietnam. We thank A.V. Schinov (A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia), Dr. Bui Xuan Phuong, Dr. Tran Cong Huan, (Joint Vietnam-Russian Tropical Research and Technological Centre, Hanoi, Vietnam), who made considerable efforts in preparing for the expedition and its organisation. We also thank the administrations of Huu Lien Nature Reserve for their aid in the management of our studies. We are very grateful to the anonymous reviewers for their helpful and constructive comments on the early version of the manuscript.

References

http://dx.doi.org/10.1111/j.1469-7998.2009.00888.x

http://dx.doi.org/10.1644/06-mamm-f-038r2.1

http://dx.doi.org/10.3103/s0096392510040139

http://dx.doi.org/10.11646/zootaxa.3640.4.2

http://dx.doi.org/10.1644/1545-1542(2001)082<0960:atots>2.0.co;273

http://dx.doi.org/10.1111/j.1095-8312.2008.01024.x

http://dx.doi.org/10.1111/j.1463-6409.2011.00494.x
THE TAXONOMIC POSITION OF **TONKINOMYS DAOVANTIENI**

Zootaxa 3734 (5) © 2013 Magnolia Press · 543

http://dx.doi.org/10.1186/1471-2148-10-184

http://dx.doi.org/10.1111/j.1471-2148.2007.01752.x

http://dx.doi.org/10.1016/j.ympev.2008.01.001

http://dx.doi.org/10.1046/j.1095-8312.2003.00253.x

http://dx.doi.org/10.1093/molbev/msr121

http://dx.doi.org/10.1111/j.1096-3642.1925.tb01524.x

http://dx.doi.org/10.1034/j.1601-5223.2003.01686.x

http://dx.doi.org/10.1007/bf00236182

APPENDIX 1. List of *Tonkinomys daovantieni* samples and its localities.

ZMMU S-190817 (LD3), Ad. M. 21º41'26.95"N; 106º19'52.70"E (GeneBank IDs; KC209558, KC209569, KF154058)

ZMMU S-191155 (HL17), Ad. M. 21º40'N; 106º22'22.32"E (GeneBank IDs; KC209559, KC209564, KF154059)

ZMMU S-191155 (HL22), Ad. F. 21º40'29"N; 106º22'51"E (GeneBank IDs; KC209560, KC209565, KF154060)

ZMMU S-191156 (HL23), Ad. F. 21º39'37"N; 106º23'15"E

ZMMU S-191157 (HL24), Ad. M. 21º40'N; 106º22'22.32"E (GeneBank IDs; KC209561, KC209566, KF154061)

ZMMU S-191158 (HL25), Sad. M. 21º40'N; 106º22'22.32"E (GeneBank IDs; KC209562, KC209567, KF154062)

ZMMU S-191159 (HL26), Sad. M. 21º40'N; 106º22'22.32"E (GeneBank IDs; KC209563, KC209568, KF154063)

ZMMU S-191160 (HL27), Ad. M. 21º37'32"N; 106º20'49"E (GeneBank IDs; KC209558)

ZMMU S-191161 (HL28), Ad. M. 21º37'32"N; 106º20'49"E, karyotyped. (GeneBank IDs; KC209558)

ZMMU S-191162 (HL30), near 21º40'N; 106º22'22E, no precise locality available (GeneBank IDs; KC209558)

ZMMU S-191163 (HL31), near 21º40'N; 106º22'22E, no precise locality available (GeneBank IDs; KC209558)

ZMMU S-191164 (HL32), near 21º40'N; 106º22'22E, no precise locality available (GeneBank IDs; KC209558)

ZMMU S-191165 (HL33), near 21º40'N; 106º22'22E, no precise locality available (GeneBank IDs; KC209558)

ZMMU S-191166 (HL34), near 21º40'N; 106º22'22E, no precise locality available (GeneBank IDs; KC209558)