A phylogenetic analysis and taxonomic revision of the oribatid mite family Malaconothridae (Acari: Oribatida), with new species of Tyrphonothrus and Malaconothrus from Australia

MATTHEW J. COLLOFF1 & STEPHEN L. CAMERON1,2
1CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia. E-mail: Matt.Colloff@csiro.au
2Present address: Biogeosciences Discipline, Faculty of Science & Technology, Queensland University of Technology, Brisbane, Queensland 4000, Australia. E-mail: sl.cameron@qut.edu.au

Table of contents

Abstract ... 301
Introduction .. 302
Material and methods ... 303
Tyrphonothrus Knülle, 1957 ... 305
Malaconothrus Berlese, 1904 306
Taxonomic and nomenclatorial considerations 307
Descriptions of new species 307
Tyrphonothrus Knülle, 1957 ... 307
 Tyrphonothrus gnamnaensis sp. nov. 307
 Tyrphonothrus gringai sp. nov. 309
 Tyrphonothrus maritimus sp. nov. 313
 Tyrphonothrus taylori sp. nov. 315
Malaconothrus Berlese, 1904 318
 Malaconothrus beecroftensis sp. nov. 318
 Malaconothrus darwini sp. nov. 320
 Malaconothrus gundungurra sp. nov. 324
 Malaconothrus jowetiae sp. nov. 327
 Malaconothrus knuellei sp. nov. 330
 Malaconothrus talaitae sp. nov. 333
Discussion .. 336
Acknowledgements .. 337
References .. 338

Abstract

Hitherto, the Malaconothridae contained Malaconothrus Berlese, 1904 and Trimalaconothrus Berlese, 1916, defined by the possession of one pre-tarsal claw (monodactyly) or by three claws (tridactyly) respectively. However, monodactyly is a convergent apomorphy within the Oribatida and an unreliable character for a classification. Therefore we undertook a phylogenetic analysis of 102 species as the basis for a taxonomic review of the Malaconothridae. We identified two major clades, equivalent to the genera Tyrphonothrus Knülle, 1957 and Malaconothrus. These genera are redefined. Trimalaconothrus becomes the junior subjective synonym of Malaconothrus. Some 42 species of Trimalaconothrus are recombined to Malaconothrus and 15 species to Tyrphonothrus. Homonyms created by the recombinations are rectified. The replacement name M. hammerae nom. nov. is proposed for M. angulatus Hammer, 1958, the junior homonym of M. angulatus (Willmann, 1931) and the replacement name M. luxtoni nom. nov. is proposed for M. scutatus Luxton, 1987, the junior homonym of M. scutatus Mihelič, 1959. Trimalaconothrus iteratus Subías, 2004 is an unnecessary replacement name and is a junior objective synonym of Malacoconthus longirostrum (Hammer 1966). Malaconothrus praeoccupatus Subías, 2004 is a junior objective synonym of M. machadoi Balogh & Mahunka, 1969. Malaconothrus obsessus (Subías, 2004), an unnecessary replacement name for Trimalaconothrus albula Hammer 1966 sensu Tseng 1982, becomes an available name for what is in fact a previously-undescribed species of Malaconothrus. We describe four new species of Malaconothrus from Australia.
Tyrphonothis: *T. gnammaensis* sp. nov. from Western Australia, *T. gringai* sp. nov. and *T. maritimus* sp. nov. from New South Wales, and *T. taylori* sp. nov. from Queensland. We describe six new species of Malaconothrus: *M. beeeroftensis* sp. nov., *M. darwini* sp. nov., *M. gundungurra* sp. nov. and *M. knuellei* sp. nov. from New South Wales, *M. jowetiae* sp. nov. from Norfolk Island, and *M. talaitae* sp. nov. from Victoria.

Key words: Phylogeny, evolution, cladistics, taxonomy, morphology, oribatid mite, parthenogenesis, Australia, Norfolk Island

Introduction

The Malaconothridae is a family of small to medium-sized oribatid mites (length range 200–720 μm) containing two speciose genera, *Malaconothrus* Berlese, 1904 (including the subgenus Cristonothrus Subías, 2004) and *Trimalaconothrus* Berlese, 1916 (including the subgenus *Tyrphonothis* Knülle, 1957). *Fossonothrus* was erected by Hammer (1962) but Subías, (2004) made it a junior synonym of *Tyrphonothis*, and *Zeanothrus* Hammer 1966 is a junior synonym of *Trimalaconothrus* (*Trimalaconothrus*). The phylogenetic significance of the Malaconothridae is that the diverse and important group of mites, the Astigmata, are considered to be either the sister group, or derivative members, of the Malaconothroidae (Norton, 1998, 2007). Subías (2004, 2012) listed 83 species in *Trimalaconothrus* (29 in *Tyrphonothis*) and 64 species in *Malaconothrus* (35 in Cristonothrus). The genera and subgenera have cosmopolitan distributions. Many species inhabit aquatic macrohabitats including wet meadows, marshes, peat bogs, springs, streams and pools. Microhabitats include saturated Sphagnum and other cryptogams especially near waterfalls, stream banks and overhangs where freshwater runs off. Malaconothridae are also associated with forest leaf litter and soil, lichens and mosses on tree trunks, and above-ground vegetation including forest canopy.

The Malaconothridae was proposed by Berlese (1916) for *Malaconothrus*. Sellnick (1928) and Willmann (1931) included *Malaconothrus* and *Trimalaconothrus* in the family, and the basic family concept and generic definitions have not changed significantly since that time. The primary character still used to differentiate *Malaconothrus* from *Trimalaconothrus* is dactylus: the former are monodactylous, the latter tridactylous. In a revision of the Malaconothridae, Knülle (1957) attempted to improve the definition and differentiation of *Malaconothrus* and *Trimalaconothrus* by using a broader range of characters than just dactylus. These included the shape of the tarsi, the number of cheliceral setae, the shapes of the palp tarsal solenidion and seta ft” on tarsi I–III and the positions of solenidia of tarsus I. Knülle (1957) proposed the subspecies *Tyrphonothis* for those species of *Trimalaconothrus* with elongated tarsi, 7–12 pairs of genital setae and a particular overlapping configuration of the adanal and genital plates. Weigmann (1997) considered that tridactylly was plesiomorphic in adults of the Malaconothroidea and could be used to separate *Trimalaconothrus* from *Malaconothrus*, but the other characters used by Knülle (1957) were “not necessarily sufficiently common characters in all species of the two genera.” But if dactylus is the only character that separates the two genera, is this an adequate basis for their validity? The problem is that monodactylly is a convergent apomorphy with a mosaic-type expression within the Oribatida. For example, the crotonioid genus *Camisia* contains both monodactyly and tridactyly species (Colloff, 1993; Olszanowski, 1996). Monodactylly is relatively uninformative and cannot be used reliably as a defining character in the generic classification of Malaconothridae because it represents an oversimplification of evolutionary relationships.

Subías (2004) proposed the subspecies *Cristonothrus* for those species of *Malaconothrus* with ridges on the notogaster. On its own, this character is insufficient justification for the subgenus because notogastral ridges appear have been secondarily lost in certain species and may have evolved more than once within the Malaconothridae. Notogastral ridges are present in many species of *Tyrphonothis*, for example. This means that any classification based on monodactylly as a generic character renders the presence of notogastral ridges homoplous, and vice versa (Figs. 1a, 1b). Despite these problems, selected groups of species within *Trimalaconothrus* and *Malaconothrus* do appear to possess combinations of shared character states, especially the morphology of the prodorsal carinae, the particular shape of the notogaster, consistent patterns in the relative lengths of the notogastral setae, the presence or absence of notogastral ridges and their configuration, as well as the arrangement of the genital setae and the shape of tarsus I. A single shared character state, or even two, might reasonably be considered an example of homoplasy, but the presence of a series of shared, linked character states suggests more complex