Sponges associated with octocorals in the Indo-Pacific, with the description of four new species

BARBARA CALCINAI1,4, GIORGIO BAVESTRELLO2, MARCO BERTOLINO1, DANIELA PICA1, DANIEL WAGNER3 & CARLO CERRANO1

1 Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy. E-mail: b.calcinai@univpm.it; marco.bertolino75@libero.it; d.pica@univpm.it; c.cerrano@univpm.it

2 Dipartimento per lo studio della Terra, dell’Ambiente e della Vita, Corso Europa, 26, 16132, Genova, Italy. E-mail: Giorgio.Bavestrello@unige.it

3 Papahanaumokuakea Marine National Monument and UNESCO World Heritage, Honolulu, HI, USA. E-mail: Daniel.wagner@noaa.gov

4 Corresponding author

Accepted by E. Hajdu: 19 Nov. 2012; published: 25 Feb. 2013
BARBARA CALCINAI, GIORGIO BAVESTRELLO, MARCO BERTOLINO, DANIELA PICA, DANIEL WAGNER & CARLO CERRANO

Sponges associated with octocorals in the Indo-Pacific, with the description of four new species
(Zootaxa 3617)

61 pp.; 30 cm.
25 Feb 2013
ISBN 978-1-77557-110-0 (paperback)
ISBN 978-1-77557-111-7 (Online edition)
Table of contents

Abstract ... 4
Introduction .. 4
Material and methods 6
Systematic descriptions 6
Order Hadromerida Topsent, 1894 6
 Family Suberitidae Schmidt, 1870 6
 Genus Prosuberites Swartchewsky, 1905 6
 Prosuberites epiphtum (Lamarck, 1815) 6
Genus Terpios Duchassaing & Michelotti, 1864 8
 Terpios cf. fugax Duchassaing & Michelotti, 1864 . 8
Family Spirastrellidae Ridley & Dendy, 1886 ... 9
 Genus Spirastrella Schmidt, 1868 9
 Spirastrella cf. cunctatrix Schmidt, 1868 9
Order Poecilosclerida Topsent, 1928 10
 Suborder Myxillina Hajdu, Van Soest & Hooper, 1994 10
 Family Chondropsidae Carter, 1886 10
 Genus Batzella Topsent, 1893 10
 Genus Chondropsis Carter, 1886 12
 Chondropsis subtulis n. sp. 12
Genus Strongylacidon Lendenfeld, 1897 14
 Strongylacidon meganese (de Laubenfels, 1951) ... 14
 Strongylacidon zanzibarense Lendenfeld, 1897 ... 15
Family Crambeidae Lévi, 1963 15
Genus Monanchora Carter, 1883 15
 Monanchora enigmatica (Burton & Rao, 1932) 15
 Monanchora quadrangularis (Lévi, 1958) 17
Family Desmacididae Schmidt, 1870 19
Genus Desmapsamma Burton, 1934 19
 Desmapsamma vervoorti van Soest, 1998 19
Family Hymedesmiidae Topsent, 1928 21
Genus Hymedesmia Bowerbank, 1864 21
 Subgenus Hymedesmia Bowerbank, 1864 21
 Hymedesmia (Hymedesmia) spinata n. sp. 21
Subgenus Stylopus Fristedt, 1885 25
 Hymedesmia (Stylopus) perlicuda n. sp. 25
Family Tedaniidae Ridley & Dendy, 1886 27
Genus Tedania Gray, 1867 27
 Subgenus Tedania Gray, 1867 27
 Tedania (Tedania) brevispiculata Thiele, 1903 .. 27
 Tedania (Tedania) ignis (Duchassaing & Michelotti, 1864) 28
Family Desmacellidae Ridley & Dendy, 1886 30
Genus Biemma Gray, 1867 30
 Biemma fistulosa (Topsent, 1897) 30
Family Esperiopsidae Hentschel, 1923 32
Genus Amphilectus Vosmaer, 1880 32
 Amphilectus sp. 32
Family Mycaleidae Lundbeck, 1905 33
Genus Mycale Gray, 1867 33
 Subgenus Mycale Gray, 1867 33
 Mycale (Mycale) grandis Gray, 1867 33
Subgenus Aegogropila Gray, 1867 35
 Mycale (Aegogropila) crassissima (Dendy, 1905) ... 35
 Mycale (Aegogropila) cf. liliaceae Carballo & Hajdu, 1998 37
 Mycale (Aegogropila) phillipensis (Dendy, 1896) .. 39
 Mycale (Aegogropila) furcata n. sp. 41
Subgenus Carmia Gray, 1867 44
 Mycale (Carmia) cf. toxifera (Dendy, 1896) 44
 Mycale (Carmia) sp. 46
Subgenus Zygomycale Topsent, 1929 46
 Mycale (Zygomycale) parisi (Bowerbank, 1875) .. 46
Order Halichondrida Gray, 1867 50
 Family Halichondriidae Gray, 1867 50
 Genus Halichondria Fleming, 1828 50
 Subgenus Halichondria Fleming, 1828 50
 Halichondria (Halichondria) cf. melanadocia de Laubenfels, 1936a 50
Order Haplosclerida Topsent, 1928 .. 51
Suborder Haplosclerina Topsent, 1928 51
Family Niphathiidae Van Soest, 1980 51
Genus Gellioides Ridley, 1884 .. 51
 Gellioides hamata Thiele, 1903 51
Family Callyspongiidae de Laubenfels, 1936 53
Genus Callyspongia Duchassaing & Michelotti, 1864 53
 Callyspongia (Callyspongia) sp................................ 53
Suborder Petrosina Boury-Esnault & Van Beveren, 1982 53
Family Phloeodictyidae Carter, 1882 53
Genus Oceanapia Norman, 1869 53
 Oceanapia fistulosa (Bowerbank, 1873) 53
Discussion ... 56
Acknowledgements ... 57
References ... 57

Abstract

Sponges are characterised by high levels of phenotypic plasticity, thus allowing the same species to live in different habitats by taking different shapes. Here we describe 28 sponge species associated with the octocorals Carijoa riisei, Paratelesto rosea and Alertigorgia hoeksemai in Indonesia, Hawai‘i and Vietnam, including four species that are new to science (Chondropsis subtilis, Hymedesmia (Hymedesmia) spinata, Hymedesmia (Stylopus) perlucida, Mycale (Aegopropila) furcata). Moreover, a large proportion of the described sponge species (21.4%) represent new records for the studied areas (Indonesia and Hawai‘i). In total, we have studied 47 colonies of C. riisei associated with 24 sponge species, 5 colonies of P. rosea associated with 4 species and one colony of A. hoeksemai associated with one sponge species. Collectively, these examples of associations highlight the importance of epibiosis as a biodiversity enhancing process.

Key words: Porifera, Anthozoa, Epibiosis, Indonesia, Hawai‘i, Vietnam

Introduction

In the marine environment, the availability of hard substrate is a typical limiting factor for sessile organisms (Jackson 1977; Connell 1978) and in tropical (Wulff 2006), temperate (Puce et al. 2008; Bavestrello et al. 2009) and polar waters (Cerrano et al. 2001; 2009; Gutt & Schickan 1998) epibiosis is a common strategy to overcome the problem. Epibiosis promotes biodiversity and increases spatial heterogeneity as well as biological interactions (Whal 2009). Branched octocorals are typically exploited as a living substrate by benthic filter feeders. Bayer (1961) reported several examples of commensal invertebrates associated with octocorals, such as hydroids, polychaetes, crustaceans and molluscs. Goh & Chou (1999) noted that half of the 31 octocoral species known from off Singapore are associated with sponges, hydroids, polychaetes, crustaceans, bryozoans and echinoderms. By growing on octocorals, filter feeders increase their filtration efficiency (Linskens 1963; Oswald & Seed 1986; Zea 1993) and can supplement their diet by consuming the organic matter and bacteria entrapped in the coral mucus (Goh & Chou 1999). On the other hand, octocorals might also benefit from hosting epibionts that may protect them from predators (Gerhart 1986; Calcinai et al. 2004; Scinto et al. 2008; Wagner et al. 2009). Although very common, associations between octocorals and other organisms are still poorly studied.

Sponges play a paramount ecological role, both functional and structural (Wulff 2001; Bell 2008), and share numerous relationships with many organisms. In this context, symbiotic associations may be considered not only as the result, but also as the source of biodiversity (Cerrano et al. 2006a).

Van Soest and Verseveldt (1987) reported the first case of an association between the octocoral Tubipora musica Linné, 1758 and the sponge Mycale sp., and Calcinai et al. (2004) described the epibiosis of the sponge Desmapsamma anchorata (Carter, 1882) on the octocoral Carijoa riisei (Duchassaing & Michelotti, 1864) in North Sulawesi (Indonesia). Other data derive from the Caribbean where 14 species of sponges where listed as epibionts of gorgonians in Puerto Rico, with Desmapsamma anchorata being the most common (Yoshioka & Yoshioka 1991; McLean & Yoshioka 2007). In the coralligenous assemblage of the Mediterranean Sea, the sponge Pleraplysilla spinifera (Schulze, 1879) is commonly associated with the purple gorgonian Paramuricea clavata (Risso, 1826) (Bavestrello et al. 1997). In this study we report numerous examples of epibiosis between sponges and three different species of octocorals from the Pacific Ocean (Carijoa riisei, Paratelesto rosea (Kinoshita, 1909) and Alertigorgia hoeksemai van Ofwegen & Alderslade, 2007), and describe four new sponge species that are involved in such associations.