A revision of the genus *Thouarella* Gray, 1870 (Octocorallia: Primnoidae), including an illustrated dichotomous key, a new species description, and comments on *Plumarella* Gray, 1870 and *Dasystenella*, Versluys, 1906

TAYLOR, M.L. 1,2,3, CAIRNS, S. D. 4, AGNEW, D.J. 2,5 & ROGERS, A.D. 3

1Zoological Society of London, Institute of Zoology, Regent’s Park, London, NW1 4RY, UK
2Department of Natural Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
3Department of Zoology, University of Oxford, Tinbergen building, South Parks Road, Oxford, UK, OX1 3PS
4Department of Invertebrate Zoology, MRC 163, P.O. Box 37012, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA
5Marine Resources Assessment Group Ltd, 18 Queen Street, London, UK

Corresponding author: michelle.taylor@zoo.ox.ac.uk

Magnolia Press
Auckland, New Zealand

Table of contents

Abstract .. 4
Introduction .. 4
 History of Thouarella systematics. .. 5
 Biology and reproduction .. 6
Materials and Methods .. 7
 Methods .. 7
Results ... 7
 Historical summary of the Thouarella species groups 7
 Antarctica gruppe ... 8
 Köllikeri-gruppe .. 8
 Hilgendorfi-gruppe .. 8
 Species groups .. 9
 Thouarella morphology and characters. .. 9
 Branching structure .. 9
 Polyp shape, arrangement, and distribution ... 12
 Sclerites .. 12
 Species synonymisations and removals .. 14
 Did Thouarella originate in the Antarctic? ... 15
 Species descriptions .. 20
Illustrated dichotomous key to Thouarella species ... 20
Systematic Account ... 20
Group 1—isolated polyps ... 22
 1. Thouarella antarctica (Valenciennes, 1846) .. 22
 2. Thouarella variabilis Wright and Studer, 1889. .. 26
 3. Thouarella brevispinosa Wright and Studer, 1889, new rank 30
 4. Thouarella affinis Wright and Studer, 1889 .. 33
 5. Thouarella koellikeri Wright and Studer, 1889 ... 37
 6. Thouarella brucei Thomson and Ritchie, 1906 .. 41
 7. Thouarella striata Kükenthal, 1907 ... 44
 8. Thouarella crenelata Kükenthal, 1907 .. 48
 9. Thouarella clavata Kükenthal, 1908 ... 52
 10. Thouarella pendulina (Roule, 1908) ... 56
 11. Thouarella chilensis Kükenthal, 1908 .. 60
 12. Thouarella hicksoni Thomson, 1911 .. 64
 13. Thouarella bipinnata Cairns, 2006 ... 67
 15. Thouarella minutus Zapata-Guardiola and López-González, 2010a 70
 17. Thouarella parachileensis sp. nov. ... 72
Species Group 2—polyps in pairs or whorls ... 76
 18. Thouarella hilgendorfi (Studer, 1878) .. 76
 19. Thouarella museleyi Wright and Studer, 1889 .. 77
 20. Thouarella lata Versluys, 1906 . .. 81
 21. Thouarella tydemani Versluys, 1906 ... 85
 22. Thouarella coronata Kinoshita, 1908 .. 86
 23. Thouarella parva Kinoshita, 1908 ... 89
 24. Thouarella biserialis (Nutting, 1908) ... 90
 25. Thouarella grasshoffi Cairns, 2006 ... 91
New species combinations ... 92
 Plumarella diadema (Cairns, 2006), new combination 92
 Plumarella recta (Nutting, 1912), new combination .. 94
 Plumarella alternata (Nutting, 1912), new combination 97
 Plumarella superba (Nutting, 1912) .. 98
 Plumarella bayeri (Zapata-Guardiola and López-González, 2010b), new combination ... 98
 Plumarella undulata (Zapata-Guardiola and López-González, 2010b), new combination ... 99
 Dasystenella acanthina (Wright and Studer, 1889) .. 99
Acknowledgements .. 102
References ... 103
Abstract

A comprehensive revision of the genus Thouarella is presented. Thirty-five holotypes of the 38 nominal Thouarella species, two varieties, and one form were examined. The number of original Thouarella species has been reduced to 25, mostly through synonymy or new genus combinations. In the process several new species have also been identified, one of which is described here as Thouarella parachilensis nov. sp. The genus is split into two groups based on polyp arrangement: Group 1 with isolated polyps and Group 2 with polyps in pairs or whorls. An illustrated dichotomous key and detailed character table of the 25 Thouarella species are presented alongside an up-to-date account of all species described in the 19th and 20th centuries and summaries of the few described from 2000 onwards. We propose that Thouarella longispinosa is synonymous with Dasystenella acanthina, T. versluysi with T. brucei, and, T. tenuisquamis, T. flabellata, and T. carinata are synonymous with T. laxa. Lastly, we propose that T. bayeri and T. undulata be placed in Plumarella and support recent suggestions that T. alternata, T. recta, T. superba, and T. diadema are also Plumarella.

Key words: Cnidaria, taxonomic revision, sub-Antarctic, octocoral

Introduction

Thouarella Gray, 1870 is a genus of primnoid octocorals within the class Anthozoa. Octocorals usually have small calcium carbonate sclerites over or within their tissue (with a few notable exceptions, discussed in Alderslade & McFadden 2007). Within octocorals there are a wide variety of sclerite shapes and sizes (Bayer et al. 1983) serving different functions, such as limiting adjacent sclerite movement, giving rigidity and support, as well as flexibility (Lewis & Wallis 1991). Primnoids, with the exception of one species of Mirostenella Bayer, 1988, which has a jointed axis, have solid continuous, calcified gorgonin axes (Cairns & Bayer 2009). They are found worldwide but are especially common in the Antarctic seas and Southern Ocean (Thouarella is no exception) and predominantly occur deeper than 400 m, with the deepest record from 5850 m (although primnoids have been recorded from 8 m depth; Cairns & Bayer 2009).

Thouarella is an architecturally delicate genus in which the majority of species have flower-like, open operculate polyps covered with thin sclerites. Species of Thouarella are locally abundant in many areas of the deep sea, especially in the sub-Antarctic, and play an important ecological role, providing habitat for many other animals from a variety of phyla. Although relatively common, little research has focused on species identifications beyond the original type descriptions, many of which are from the turn of last century. Often considered the “bottlebrush” genus, Thouarella spp. in fact have a range of branching forms, similar to several other genera, resulting in specimens being frequently misidentified.

Thouarella is a group of very closely related species; their morphology and many characters historically used to separate species and subgenera are variable and the genus is in need of further revision. Having reviewed all available holotypes we present the most thorough review of this ecologically important genus to date. This has resulted in significant changes to the understanding of several species within this genus and the key characters used for species identification.

Abbreviations

NHM—Natural History Museum, London, UK.
NMNH—National Museum of Natural History, Smithsonian Institution, Washington DC, USA.
MNHWU—Museum of Natural History, Wroclaw University.
SMF—Senckenberg Forschungsinstitut und Museum Frankfurt.
UMUT—University Museum, University of Tokyo.
ZMA—Zoological Museum, University of Amsterdam.
ZMH—Zoological Museum, University of Hamburg.
ZMB—Zoologisches Museum, Berlin.
ZSL—Zoological Society of London, Institute of Zoology.
MYA—million years ago
ZGR—Zapata-Guardiola, Rebeca
SJ—Schleyer, Jon