A new Clathria (Demospongiae, Microcionidae) from Peru occurring on rocky substrates as well as epibiontic on Eucidaris thouarsii sea urchins

L. KAREM AGUIRRE1, YURI HOOKER1, PHILIPPE WILLENZ2,4 & EDUARDO HAJDU3

1Laboratorio de Biología Marina, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Calle Honorio Delgado 430, Lima 31, Lima, Perú. E-mail: karemaguirre@gmail.com, hookery@yahoo.com
2Department of Invertebrates, Section Malacology, Royal Belgian Institute of Natural Sciences (RBINS), Rue Vautier 29, B–1000, Brussels, Belgium. E-mail: philippe.willenz@naturalsciences.be
3Museu Nacional, Departamento de Invertebrados, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940–040, Rio de Janeiro, RJ, Brazil. E-mail: eduardo.hajdu@gmail.com
4Corresponding author

Abstract

Southeastern Pacific sponges (Phylum Porifera) range among the world’s least known faunas, with only 13 species reported to date from the entire Peruvian coast. This state of affairs motivated the onset of two large, cooperative, exploratory initiatives, with the aim of mapping sponge richness and distribution in the area: Proyectos ESPER and EsponjAS. Over 800 specimens have been collected in Peru since 2007, with identifications still in progress. Among these, a sponge species originally thought to be an exclusive epibiont on Eucidaris thouarsii sea urchins, relatively conspicuous on Peru’s Punta Sal region. This sponge, latter found to occur on additional substrates too, is described as a new species of Clathria (Microciona). Cidarid density ranged between 1.5 and 12/m², and largest diameter of the tests between 3.2 and 5.6 cm. Total number of spines on each sea urchin varied between 68 and 96, and percent sponge coverage of these, between 18.2 and 75.7. There appears to be only a slight tendency for increased sponge coverage on larger sea urchins, so there may be factors, other than sea urchin age, shaping this association. Clathria (Microciona) aculeofila sp. nov. can be markedly dominant as an epibiont on E. thouarsii, albeit the great sponge richness in the area. This is in contrast to the allegedly opportunistic, diverse epibiosis by sponges reported previously for Antarctic cidaroids.

Key words: Porifera, new species, epibiosis, Clathria (Microciona)

Introduction

Notwithstanding the ecological importance of sponges (Porifera) in benthic marine ecosystems, and for their biological, chemical and pharmaceutical properties, Southeastern Pacific species range among the least known in the world (Hajdu and Desqueyroux–Faúndez 2008). Only 13 species belonging to the Demospongiae (4) and Hexactinellida (9) are this far known from Peru, with no Calcarea yet recorded. The complete list comprises the demosponges Acarnus peruanus van Soest et al., 1991; Dysidea ligneana (Hyatt, 1877); Myxilla asymmetrica Desqueyroux–Faúndez and van Soest, 1996; Myxilla dracula Desqueyroux–Faúndez and van Soest, 1996; and the hexactinellids Bathydisar spinosissimus Lendenfeld, 1915; Eurete spinosum Lendenfeld, 1915; Holascus edwardsi Lendenfeld, 1915; Hyalonema agassizi Lendenfeld, 1915; H. agujanum Lendenfeld, 1915; H. bianchoratum pinula-Lendenfeld, 1915; H. tenuifusum Lendenfeld, 1915; H. tylostylum Lendenfeld, 1915 and Sympagella cantharellus Lendenfeld, 1915. With the exception of Acarnus peruanus and Dysidea ligneana, all these sponges come from deep waters. This meager list was the main reason to start the ESPER Project (“Esponjas del Perú”) in 2007 and Proyecto EsponjAS (“Esponjas da América do Sul) in 2008, with the aim of mapping sponge richness and distribution along the Peruvian coast. This is also a natural follow up for Hajdu, Willenz et al.’s taxonomic studies of Chilean sponges (e.g. Azevedo et al., 2009; Willenz et al., 2009).