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Abstract

The phylogenetic interrelationships of animals (Metazoa) have been elucidated by refined systematic methods and by

new techniques, notably from molecular biology. In parallel with the strong molecular focus of contemporary metazoan

phylogenetics, morphology has advanced with the introduction of new approaches, such as confocal laser scanning

microscopy and cell-labelling in the study of embryology. The discovery of new animal diversity (previously unknown

groups like Cycliophora and Micrognathozoa) has invigorated the field as well. At present, broad consensus exists for the

monophyly of bilaterian animals, a split of Bilateria into Deuterostomia and Protostomia, a division of protostomes into

a clade of mostly spiral cleavers (Lophotrochozoa) and a moulting clade (Ecdysozoa), a ‘restricted’ deuterostome

hypothesis that excludes the lophophorate phyla, and a basal position of acoel and nemertodermatid flatworms within

Bilateria. However, the position of several protostome phyla, especially Bryozoa and Chaetognatha, remains intractable.

Phylogenomic approaches such as Expressed Sequence Tags are showing much promise for resolving ongoing contro-

versies at the base of the animal tree, especially the branching pattern among ctenophores, sponges and cnidarians.
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The great tree of life which fills with its dead and broken branches the crust of the earth, and covers the
surface with its ever branching and beautiful ramifications.

C.R. Darwin (1859)

The setting

The great tree of life, which shows the evolutionary relationships among all organisms, is one of the most
powerful metaphors for biologists. One of the first and, remarkably, most explicit of such trees was presented
by German zoologist Ernst Haeckel (1866), but the exact shape of the tree of life has remained elusive. The
relationships of some groups of organisms have been well resolved and uncontroversial since the dawn of
Evolutionary Biology, while the placement of other groups has remained entirely enigmatic or even subject to
strongly supported but conflicting results across studies. Our focus here is on a large branch that has been par-
ticularly problematic, but is of central interest—the relationships among the major groups of animals, a group
of multicellular eukaryotes also known as Metazoa (Haeckel 1874). Specifically, we explore the implications
of recent phylogenetic findings based on large datasets for the evolution of key developmental and morpho-
logical characters across the group. We also briefly discuss the application of previously defined node-based
name for the metazoan clade Lophotrochozoa in light of remaining phylogenetic uncertainty.

Modern zoology has come a long way in providing evidence for our current understanding of animals and
the way they function in their environments. A series of disciplines, including embryology and anatomy, as
well as techniques, including light and transmission electron microscopy, have played key roles in the devel-

opment of 19th and 20th Century zoology, well after Swedish biologist Carl von Linné established his taxo-
nomic system (Linnaeus 1758). Linné recognized six ranks (kingdom, class, order, genus, species and
variety—he did not propose the rank of phylum), and one of his three kingdoms, Animalia, consisted of 6
classes: Amphibia, Aves, Mammalia, Pisces, Reptilia, Insecta, and Vermes, the latter divided into Intestina,
Mollusca, Testacea, Lithophyta and Zoophyta. It is this classification of animals that has been under revision
ever since.

Two ancillary scientific disciplines in particular, both developed in the second half of the 19th Century,
have provided a framework and rich set of tools for the integration of all other findings in an evolutionary
context. The first is cladistics (understood in a broad sense), a way of evaluating and comparing phylogenetic
hypotheses formulated on the basis of shared evolutionary novelties. Cladistics allowed an examination of
diverse sets of characters (morphological, behavioral, or others) by taking their evidence into simultaneous
consideration when evaluating competing phylogenetic trees.  The second is molecular biology, which enables
the examination of organisms at the level of genes and gene products and provides the opportunity to collect
many more character data relevant to discerning among competing phylogenetic hypotheses than have ever
been available. Molecular sequence data allow for what we could term naïve phylogenetic assessment, while
dramatically increasing the amount of phylogenetic information available to study animal relationships. It is
in this latter respect and the role that molecular data are playing in reconstructing the Animal Tree of life that
we will concentrate on for this review.

The Animal Tree of Life—molecules and history

It was barely two decades ago that the first molecular biologists used sequence data from ribosomal RNAs to
produce phylogenetic trees of selected animals (Field et al. 1988; Lake 1989; 1990). These were by no means
the first animal phylogenies proposed, but the first cladistic hypotheses for all major animal lineages based on
parsimony analysis of a morphological character matrix were actually subsequent to the publication of the
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molecular trees (Meglitsch and Schram 1991; Schram 1991; Eernisse et al. 1992). Nonetheless, morphology-
based hypotheses had dominated our views of animal phylogeny for decades, but were plagued by a major
lack of consensus on the one hand (see a summary of earlier hypotheses in Eesnisse et al. 1992), and by using
groundplans as terminals on the other hand (see Prendini 2001 for a thorough discussion on this topic), which
often resulted in strong disagreement among the position of certain key taxa. Several more refined cladistic
hypotheses were published based on new morphological matrices in the following years (e.g., Nielsen et al.
1996; Zrzavý et al. 1998, 2001; Sørensen et al. 2000; Nielsen 2001; Zrzavý 2003; Jenner and Scholtz 2005),
or on a combination of these morphological matrices with subsets of molecular characters (e.g., Zrzavý et al.
1998, 2001; Giribet et al. 2000; Peterson and Eernisse 2001; Zrzavý 2003; Glenner et al. 2004). These sets of
characters and publications constitute, undoubtedly, key references to be considered in the study of modern
zoology, but they are substantially outnumbered by a vast literature examining relationships of animals based
solely on molecular data.

Why are molecular papers examining animal relationships so abundant in the modern literature? On the
one hand, molecular data are now—and have been for a while—much easier (and nowadays also less expen-
sive) to obtain than morphological data. In addition, molecular data can be collected by individuals without
previous experience or detailed knowledge on a given group of organisms. This has advantages, such as low-
ering the barrier for new investigators to make novel contributions to the field and allowing for economies of
scale across taxa. But it also has disadvantages, such as reducing the time available that a scholar can dedicate
to building expertise in biological details unique to their organisms because mastering molecular skills that,
while valuable for inferring relationships, reveal little else about the organisms’ biology. Regardless, it is also
clear that the amount of molecular information continues to grow at a much faster rate than the amount of
morphological information, this being driven largely by technological developments in DNA sequencing and
other molecular methods. For example, the phylogeny of the genus Drosophila can now be estimated from 12
complete genomes (Clark et al. 2007—12 Drosophila Genome Consortium).

Molecular phylogenetic analyses of metazoan relationships have come a long way since the seminal arti-
cle of Field et al. (1988). Since then, major advances have been the addition of numerous unsampled phyla
(e.g., Halanych et al. 1995; Winnepenninckx et al. 1995, 1998; Bourlat et al. 2003; Giribet et al. 2004; Park et
al. 2006), and molecular data are now available for at least one species of each animal phylum. Other develop-
ments include the analysis of multiple loci per taxon obtained through Polymerase Chain Reaction (PCR)
(e.g., Giribet 2003; Peterson et al. 2004; Rokas et al. 2005) to the more sophisticated phylogenomic analyses
(Blair et al. 2002; Dopazo et al. 2004; Wolf et al. 2004; Philip et al. 2005) and Expressed Sequence Tags
(EST)-based phylogenies (Philippe et al. 2005, 2007; Bourlat et al. 2006; Marlétaz et al. 2006; Matus et al.
2006a; Webster et al. 2006). Some of these analyses have considered absence/presence of more than 3,000
genes (Dopazo et al. 2004).

Another area where molecular phylogenetics has been instrumental is in the attention focused on the phy-
logenetic relationships within each of the major animal phyla. Naming all these studies for each phylum
would go beyond the number of pages allocated to this review. The reader could easily be referred to the pages
of journals such as Cladistics, Journal of Molecular Evolution, Molecular Biology and Evolution, Molecular
Phylogenetics and Evolution, Nature, PNAS, Science, Systematic Biology, and Zoologica Scripta, among oth-
ers. Several of these studies have recently been reviewed by Giribet (in press).

The Animal Tree of Life—morphology and new developments

While molecular phylogenetics first, and phylogenomics more recently, have revamped the scientific attention
paid to animal phylogenies in a way perhaps not seen since the introduction of the transmission electron
microscope, novel techniques for studying the anatomy of animals and their development have also flourished



LINNAEUS TERCENTENARY: PROGRESS IN INVERTEBRATE TAXONOMY64  ·  Zootaxa 1668  © 2007 Magnolia Press

in the past decade or so. This has led to large advances in our understanding of phylogenetically informative
character data, which are  a great asset when evaluating new hypotheses suggested by molecular data. One
such developments is confocal laser scanning microscopy and its application to the study of the development
of musculature (e.g., Wanninger and Haszprunar 2002a; b; Müller and Schmidt-Rhaesa 2003; Müller et al.
2004; Müller and Sterrer 2004; Worsaae and Müller 2004; Leasi et al. 2006) and nervous systems (e.g.,
Hessling et al. 1999; Hessling and Purschke 2000; Müller and Westheide 2000, 2002; Wanninger and Hasz-
prunar 2003; Maxmen et al. 2005; Wanninger et al. 2007; Zantke et al. 2007) with the aid of specific antibod-
ies. These studies have helped towards postulating novel hypotheses of relationships while adding a new
dimension to our understanding of fundamental organ systems and their evolution in animals. For example,
Hessling and Westheide (2002) provided the first evidence for a serially repeated nervous system in Echiura,
an indication that they are derived from segmented ancestors.

Developmental biology, combined with molecular techniques for gene expression patterns, has also pro-
vided important insights into basic concepts such as homology of body parts, symmetry, and others (Pangani-
ban et al. 1994; Panganiban et al. 1995; Panganiban et al. 1997; Seaver et al. 2001; Wanninger and
Haszprunar 2001; Lee et al. 2003; Kusserow et al. 2005; Martindale 2005; Seaver et al. 2005; Matus et al.
2006b; Matus et al. 2007a; Matus et al. 2007b). Classical embryology has also benefited from new techniques
for marking specific cells, allowing high-resolution fate-maps (e.g., Boyer et al. 1996; 1998; Henry and Mar-
tindale 1998; Henry et al. 2004; Maslakova et al. 2004b; Hejnol et al. 2007). 4D-microscopy has allowed fol-
lowing the fate maps for species where injection techniques are not feasible (Schnabel et al. 1997; Hejnol and
Schnabel 2005, 2007; Hejnol et al. 2006).

Another area of growth is the study of embryogenesis and larval development in animals of special inter-
est—this being due to their potential phylogenetic implications or their novel morphologies and habitats.
Some examples come from the recent interest in the development of aplacophoran molluscs (Okusu 2002;
Nielsen et al. 2007) as a source of data to address questions about putative segmentation in molluscs (Giribet
et al. 2006), or the homology of ciliary bands among spiralian larvae (Rouse 1999; Maslakova et al. 2004a;
b).

Although studied for more than  a century, after the pioneering work of Gustaf Retzius (see Afzelius
1995) and Franzén (1955), sperm ultrastructure has continued to provide phylogenetically-informative char-
acters  due to the large amount of data amassed for virtually all metazoan groups (see for example Jamieson et
al. 1995). Some classic sperm-based groupings have been corroborated by new sources of character data, e.g.,
DNA sequence data (Abele et al. 1989) and mitochondrial gene order (Lavrov et al. 2004) in the case of pen-
tastomids and fish lice (Wingstrand 1972).

Finally, the discovery of new forms of animal life in the past decades (Funch and Kristensen 1995; Kris-
tensen and Funch 2000; Klass et al. 2002; Rouse et al. 2004; Holland et al. 2005; Voight 2005) has also con-
tributed to broadening general interest in zoology. These discoveries, in addition to their broad impact on the
field, have often had broad media coverage, helping to make scientific discovery available to the public
(Figure 1). 
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FIGURE 1. Recently discovered and unusual animals. (A) Press coverage of the discovery of the bone-eating worm
Osedax (for details see Rouse and Pleijel, this volume). (B) Greenland stamp after the discovery of Micrognathozoa. (C)
Detail of the cycliophoran Symbion pandora (photograph courtesy of Peter Funch). (D) An undescribed deep-sea
lophenteropneust (photograph courtesy of Nick Holland [see Holland et al. 2005]).

Recent consensus on the Animal Tree of Life

Although several questions regarding the branching pattern of the Animal Tree of Life remain unanswered,
agreement has been reached for several nodes that receive support from a variety of sources of data and anal-
yses. One such hypothesis is presented in Figure 2. 

Although the traditional hypotheses radial/bilateral symmetry, axis polarity, and diploblasty/triploblasty
have been called into question (Martindale et al. 2002; Martindale et al. 2004; Martindale 2005; Dunn 2005),
the Animal Tree of Life shows strong evidence for the monophyly of Bilateria (= Triploblastica) (Figs. 4, 5),
leaving the phyla Porifera (Fig. 3A), Cnidaria (Figs. 3B, C), Ctenophora (Fig. 3D) and Placozoa outside of
this clade, and with uncertain affinities. 

Current views of the relationships among Bilateria have benefited greatly from molecular data that have
resolved some relationships that appeared intractable from a morphological perspective. Several recent
reviews have attempted to summarize what we know, and what we have yet to solve, with respect to animal
phylogeny (Cavalier Smith 1998; Giribet 2002; 2003; Halanych 2004). While these reviews were molecular-
centred, and differed considerably from equally modern morphologically-oriented views (Nielsen 2001; but
see Jenner and Scholtz 2005 for less-resolved hypotheses based on morphology), they were based on analyses
of single or few genes, often the same genes being used in different studies. Most of these studies agree on (a)
the monophyly of Bilateria, (b) the presence of a clade of mostly spiralian protostomes often referred to as
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Lophotrochozoa (Halanych et al. 1995), (c) the existence of a clade of moulting animals, or Ecdysozoa (Agui-
naldo et al. 1997), which unites panarthropods with the bulk of ‘Aschelminthes’, (d) a ‘restricted’ deuteros-
tome hypothesis containing Xenoturbella (Fig. 4A), the chordate phyla, and with hemichordates (Fig. 4B)
as sister to echinoderms (Fig. 4C) as Ambulacraria (Bourlat et al. 2003), but excluding the lophophorate phyla

FIGURE 2. Conservative hypothesis of metazoan relationships summarizing findings up to 2007. Green squares indi-
cate genomic/EST data available. Orange squares indicate ESTs generated by the authors and other participants in the
NSF-funded Assembling the Protostome Tree of Life project (Dunn et al. submitted).
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(Fig. 5C), and (e) the basal position of acoels and nemertodermatids as sister to all other bilaterians or Neph-
rozoa (Ruiz-Trillo et al. 1999; Jondelius et al. 2002). Another clade of non-ecdysozoan protostomes that
groups diverse mostly acoelomate phyla (platyhelminths [Fig. 5A], gastrotrichs, gnathostomulids, rotifers,
micrognathozoans), named Platyzoa (Fig. 2) (Cavalier Smith 1998; Giribet et al. 2000), has not found uni-
form support across different studies. Also, the internal relationships within major recognized clades has
remained contentious. For example, the sister-group relationship of the largest phylum, Arthropoda, is still
debatable (e.g., Telford et al. 2005; but see Mallatt and Giribet 2006 for a tree providing strong support for
Panarthropoda (= arthropods, onychophorans [Fig. 5I] and tardigrades) but not for the precise sister group of
arthropods). Likewise, the composition, phylogeny and sister-group relationships of annelids (Fig. 5G) are
still fiercely debated (Eeckhaut et al. 2000; Zrzavý et al. 2001; Bleidorn et al. 2007; Rousset et al. 2007;
Struck et al. 2007; Rouse and Pleijel this volume). The monophyly and sister-group relationship of molluscs
(Fig. 5F)—to provide just another example of a large phylum—and the relationships among its eight classes,
remain among the most challenging phylogenetic problems that molecular phylogeneticists have faced (Win-
nepenninckx et al. 1996; Passamaneck et al. 2004; Giribet et al. 2006). Broader (deep) relationships among
protostome phyla remained even more intractable (Winnepenninckx et al. 1995; Giribet et al. 2004; Peterson
and Butterfield 2005; Rokas et al. 2005; Telford et al. 2005; Mallatt and Giribet 2006; Park et al. 2006; Passa-
maneck and Halanych 2006) despite considerable efforts in increasing sampled diversity and number of loci.
A few exceptions are several recognized pairs of sister phyla, based on morphology, that  also receive strong
molecular support, such as Kinorhyncha + Priapulida (Fig. 5H), Nematoda + Nematomorpha, paraphyly of
Rotifera with respect to Acanthocephala, and the relationship of Phoronida (Fig. 5C) with Brachiopoda—with
the former sometimes nested within the latter. 

This panorama looks even worse when several ‘minor’ phyla are considered, such as Bryozoa (=Ecto-
procta), Chaetognatha (Fig. 5J), Cycliophora (Fig. 1C), Entoprocta (Fig. 5D), and Myzostomida (Fig. 5E).
Their membership to even the larger clades is uncertain. Two of these phyla, Bryozoa and Chaetognatha have
received special attention. Although chaetognaths were traditionally placed within Deuterostomia, it is now
clear that they are more closely related to protostomes, although whether they are the protostome sister group
or part of the ingroup is still unsolved (Ghirardelli 1995; Giribet et al. 2000; Kapp 2000; Shimotori and Goto
2001; Helfenbein et al. 2004; Papillon et al. 2004; Ball and Miller 2006; Marlétaz et al. 2006; Matus et al.
2006a; Harzsch and Müller 2007). Even more problematic is the case of Bryozoa, because they were used to
define the node-based clade Lophotrochozoa (Halanych et al. 1995) and their uncertain position makes this
name a synonym of Protostomia, Spiralia, or Trochozoa, depending on whether they are sister to all other pro-
tostomes (Giribet et al. 2000; Passamaneck and Halanych 2006), spiralians (Passamaneck and Halanych
2006), or trochozoans (Peterson and Eernisse 2001). More recent analyses of bryozoan relationships cannot
discern among the latter two hypotheses, as they did not include Platyhelminthes or other putative platyzoans
(Waeschenbach et al. 2006).

This ongoing lack of consensus has led some authors to legitimately question whether there is enough
information in molecular data to resolve animal relationships (Rokas et al. 2005), allegedly due to the tempo-
rally compressed radiation of animals postulated to have occurred during the Cambrian explosion. This view
has nonetheless been openly criticized as a taxon sampling bias, among other possible factors (Baurain et al.
2007).

Phylogenomic data have begun to offer responses to some long-standing phylogenetic questions where
other approaches appear to have failed. Early phylogenomic studies corroborated nodes such as Bilateria, Pro-
tostomia, or Ecdysozoa despite limited taxon sampling (Philippe et al. 2005). The addition of further taxa has
stabilized other nodes, such as Deuterostomia and  Trochozoa, although ‘suspicious’ results were also
reported for the relationships of cephalochordates and echinoderms (Delsuc et al. 2006; see Gee 2006), until
the deuterostome tree was largely settled by the inclusion of hemichordates (Fig. 4B) and Xenoturbella (Fig.
4A) (Bourlat et al. 2006). Subsequent analyses added diversity mostly within Ecdysozoa (Webster et al.
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2006), or for the phyla Chaetognatha (Fig. 5J) (Marlétaz et al. 2006; Matus et al. 2006a), and Acoela (Philippe
et al. 2007), although support for the position of the two latter phyla was not strong. By the time the study of
Philippe et al. (2007) appeared, genomic or EST data were available for Porifera (Fig. 3A) and Cnidaria (Figs.
3B, 3C), among the non-bilaterians, for all the deuterostome phyla (Fig. 4), chaetognaths (Fig. 5J), and six of
the ca. 22 protostome (Fig. 4) phyla: three ecdysozoans (arthropods, nematodes, tardigrades) and three spira-
lians (annelids, molluscs, platyhelminths) (see Fig. 2). The most intensively sampled analyses to date demon-
strate that some earlier phylogenomic findings, notably support for a monophyletic group of coelomate
animals, Coeolomata (Blair et al. 2002; Dopazo et al. 2004; Wolf et al. 2004; Philip et al. 2005), are artifacts
of inadequate sampling. Current phylogenies based on EST data corroborate the Ecdysozoa-Lophotrochozoa
split within Protostomia (Philippe et al. 2005; Marlétaz et al. 2006; Matus et al. 2006; Longhorn et al. 2007;
Philippe et al. 2007). 

Fossil data, especially from Cambrian sites of exceptional preservation, have been integrated into the
“New animal phylogeny” and present some important insights into the course of morphological character evo-
lution. In Protostomia, for example, the arthropod stem group has been reinterpreted in terms of segmentation
evolving within Ecdysozoa (Budd 2003), Cambrian embryos show developmental mode in the cycloneuralian
ecdysozoans (Dong et al. 2005; Donoghue et al. 2006), and Cambrian scleritome-bearing taxa present unique
character combinations within the Lophotrochozoa that bear on the stem-groups of Mollusca and a clade that
includes annelids and brachiopods (Caron et al. 2006; Conway Morris and Caron 2007).   

The base of the animal tree

Most studies have shown or assumed that sponges (Fig. 3A), whether monophyletic or paraphyletic, are the
earliest diverging metazoans. The early appearance of sponges in the fossil record, confidently dating back to
the Cambrian (Botting and Butterfield 2005) and most probably to the Late Proterozoic (Gehling and Rigby
1996; Li et al. 1998; Xiao et al. 2000), places them among the oldest of the modern metazoans. In addition to
their antiquity, there are several reasons that sponges have been thought to be the earliest diverging lineage of
metazoans. For one, the relatively simple organization (i.e., indefinite symmetry, few cell types, highly regu-
lative growth) of the adults of extant sponges is often presented as being representative of the primitive orga-
nization of the first multicellular animals. In this view, which is consistent with molecular analyses that
resolve sponges as a grade at the base of Metazoa (Peterson and Butterfield 2005), sponges are presented as
having diverged prior to the origin of developmental mechanisms that allowed for the more complex morphol-
ogy of other organisms, and as being living relicts of some of the earliest animals (Sperling et al. 2006). 

Other unique features of sponges are the lack of intestinal epithelium, digestive parenchyma or any cell
population specialized in digestion (Ereskovsky and Dondua 2006). However, many of the developmental
mechanisms once thought to be unique to more ‘complex’ animals, including key signaling and adhesion
genes, are known to have been in place prior to the divergence of sponge and eumetazoan lineages (Nichols et
al. 2006). 

The similarities of sponge choanocytes to choanoflagellates, the closest unicellular relatives to metazoans,
is also often presented as evidence that sponges are the earliest diverging metazoans (Medina et al. 2001;
Nielsen 2001; Müller 2003). Both have a collar of microvilli surrounding a flagellum, and the motion of the
flagellum creates a current that traps food particles in the microvilli. In traditional treatments of early animal
evolution it is presumed that these complex structures are homologous, and were therefore also present in the
most recent common ancestor of Metazoa, but subsequently lost along the stem of all non-sponge metazoans.
Recent ultrastructural studies of sponge choanocytes and choanoflagellates have, however, indicated that
these cells may not be as similar as previously thought, and that collar cells are found in a wider diversity of
animals than previously appreciated (reviewed by King 2004). This raises the possibility that they have been
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independently derived multiple times and do not on their own support the divergence of sponges prior to other
metazoans. 

The relationships among sponges and the other three non-bilaterian phyla (Placozoa, Cnidaria and Cteno-
phora) remains enigmatic, although cnidarians (Figs 3B, 3C) and not ctenophores (Fig. 3D) appear as a likely
sister group to bilaterians (Medina et al. 2001). Others have suggested that Trichoplax, rather than Porifera, is
the earliest diverging metazoan (Dellaporta et al. 2006; Signorovitch et al. 2007), with sponges as the sister
group to cnidarians, although these studies do not consider ctenophores. Others have considered that the
apparent simplicity of Trichoplax could be secondarily derived (Miller and Ball 2005). Although frond-like
fossils from the Lower Cambrian that are similar to Ediacaran “vendobiont” fronds have been allied to cteno-
phores (Shu et al. 2006), palaeontological data have not clarified the cnidarian-ctenophore-bilaterian question. 

At present, then, there is even less certainty regarding the earliest nodes in the metazoan tree of life than
there was even a decade ago. Phylogenomic approaches may be able to resolve these relationships. Additional
data from sponges and ctenophores are especially critical now that genomes have been released for two cni-
darians and Trichoplax.

FIGURE 3. Examples of basal metazoans. (A) A species of the sponge genus Diplastrella (photograph by G. Giribet).

(B) The hydrozoan cnidarian Leuckartiara octona (photograph by F. Pleijel). (c) An Indopacific coral Acropora sp. (pho-

tograph by G.W. Rouse). (d) An invasive ctenophore, Mnemiopsis leidyi (photograph by F. Pleijel).
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FIGURE 4. Examples of deuterostome animals. (A) The enigmatic Xenoturbella bocki (photograph by G.W. Rouse). (B)
The hemichordate Ptychodera bahamensis (photograph by G. Giribet). (C) Three species of crinoid echinoderms (feather
stars) on a gorgonian specimen (photograph by G.W. Rouse). (D) The lancelet Branchiostoma caribaeum (photograph by
G.W. Rouse).

FIGURE 5. Examples of protostome animals. (A) The free-living platyhelminth Hoploplana californica (photograph by
G.W. Rouse). (B) An undescribed species of the nemertean genus Baseodiscus (photograph by G. Giribet). (C) The
phoronid Phoronis hippocrepia (photograph by G.W. Rouse). (D) The entoproct Pedicellina sp. (photograph by G.W.
Rouse). (E) The myzostome Myzostoma cirriferum (photograph by G.W. Rouse). (F) The intertidal chiton Acanthopleura
granulata (photograph by G. Giribet). (G) The polychaete annelid Myrianida pachycera with a chain of reproductive sto-
lons (photograph by G.W. Rouse). (H) A juvenile of Priapulus caudatus (photograph by G.W. Rouse). (I) The ony-
chophoran Peripatoides novaezealandiae (photograph by G. Giribet).(J) A spadellid chaetognath from Belize
(photograph by G.W. Rouse).
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Bilateria

An ongoing debate has centered in the nature of the so-called Urbilateria, the common ancestor of all Bilate-
ria, and whether this was a segmented and complex animal, or a much simpler one without complex organ
systems (Balavoine and Adoutte 2003; Baguñà and Riutort 2004). It is currently more widely accepted that
the Urbilateria was indeed a simple organism, much like modern acoels or nemertodermatids (Hejnol and
Martindale in press). Such an animal would have a simple blind gut and a non-ganglionated nervous system
with statocyst-like sensory structures, and a compact body without cavities or excretory organs. At least three
bilaterian clades match this definition, including acoels, nemertodermatids and Xenoturbella (Fig. 5A). From
these, acoels and nemertodermatids have been placed as sister to Nephrozoa (the remainder of Bilateria) (Car-
ranza et al. 1997; Ruiz-Trillo et al. 1999, 2002; Jondelius et al. 2002), although a recent phylogenomic study
suggests an alternative position for acoels as a basal deuterostome (Philippe et al. 2007), although with low
nodal support. Xenoturbellida, despite sharing the morphological attributes of the theoretical Urbilaterian, has
been recently, and after a turbulent period, placed within deuterostomes, as sister to Ambulacraria (= Echino-
dermata + Hemichordata) (Bourlat et al. 2003, 2006). The fact that such animals appear at the base of Bilate-
ria or near the base of Deuterostomia in fact reinforces that such simple morphologies may be plesimorphic
for Bilateria. We cannot forget that these are the first animals able to disturb sediments three-dimensionally,
and therefore we could expect that Treptichnus pedum, the trace-fossil that defines the Precambrian/Cambrian
boundary (Valentine et al. 1999) was in fact produced by some sort of Urbilaterian with a muscular system.

Protostomia-Deuterostomia

Despite the conflict with traditional treatments of metazoans, the core composition of deuterostomes (Fig. 4)
and protostomes (Fig. 5) is now well established (Fig. 2). Deuterostome relationships, as discussed earlier, are
well resolved, with minor issues persisting with respect to the relative positions of urochordates and cephalo-
chordates (Fig. 5D) relative to vertebrates (Bourlat et al. 2006; Philippe et al. 2007). But new discoveries of
exquisitely preserved Cambrian fossils are  leading to the reinterpretation of the ancestral deuterostome char-
acters, such as the possibility of the possession of gill slits by the most common recent ancestor of Deuterosto-
mia (Shu et al. 2001, 2003, 2004). A good understanding of protostome relationships remains more elusive, as
discussed earlier. An added difficulty to understanding—and discussion of—protostome relationships is a
nomenclatural issue that we aim to clarify here, referring to a clade of mostly spiralian developers often
referred to as Lophotrochozoa (Halanych et al. 1995).

The original definition of the taxon Lophotrochozoa is quite precise and so allows for the unequivocal
delineation of its membership based on a tree topology: “…the last common ancestor of the three traditional
lophophorate taxa, the mollusks, and the annelids, and all of the descendents of that common ancestor”
(Halanych et al. 1995). This was later extended to also include the phyla Platyhelminthes and Rotifera (Agu-
inaldo et al. 1997), though without redefining the name in an unequivocal way. This has resulted in the name
Lophotrochozoa being applied in two different ways, a restricted one with reference to trees and the original
specifiers, and one with a less precise and more inclusive membership The current widespread use of the
name in the latter sense, to designate all non-ecdysozoan protostomes is therefore somewhat problematic, as
others have pointed out (Garey and Schmidt-Rhaesa 1998; Giribet 2002). Because there is uncertainty in the
placement of Bryozoa (one of the lophophorate specifiers for Lophotrochozoa), the original definition applied
to the phylogeny presented here (Fig. 2) designates a large clade that makes Lophotrochozoa a synonym of the
older name Spiralia. 
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The Future of the Animal Tree of Life

The investigation of deep animal evolution is now advancing at a faster pace than at any time in history, due
among other factors to the technological developments and to the federal support for large-scale phylogenetic
projects, such as the US National Science Foundation “Assembling the Tree of Life” program (atol.sdsc.edu)
or the Deutsche Forschungsgemeinschaft “Deep Metazoan Phylogeny” initiative. But more importantly, the
knowledge amassed during the past three centuries is now available to more zoologists than ever through
impressive research libraries and the Internet. Two incipient initiatives may actually be good indicators of the
healthy state of modern zoology, or at least of its promising future, despite also facing a noticeable biodiver-
sity crisis. The Encyclopedia of Life aims to create a web page/portal for every one of the ca. 1.7 million
described species (www.eol.org) while the Biodiversity Heritage Library (www.biodiversitylibrary.org) is cur-
rently scanning and making available all the non-copyright taxonomic literature. The possibilities for these
two initiatives, currently funded through private foundations, are tremendous. The Animal Tree of Life is
more alive than ever. We just need to connect its branches.
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