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Abstract

We present preliminary results of a phylogeographic analysis of Rhyacophila tristis, a wide-spread European 
caddisfly. Mitochondrial sequence data (the second part of the mtCOI gene) of 52 of specimens were used to 
investigate large-scale population genetic patterns of Central European populations of the study species. The 
results show strong genetic differences between a western and an eastern lineage. The deep split most 
probably indicates that the identified lineages of R. tristis survived in independent Pleistocene refugia in the 
Alps and in the Carpathians, emphasizing the importance of these areas in the Pleistocene survival of aquatic 
mountain organisms.
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Introduction

The last decade revealed many phylogeographic aspects of the European terrestrial species. 
However, aquatic, and especially mountain aquatic organisms are still under-represented in the 
surveys. The genetic population structure among populations of European mountain species can be 
very different compared to more eastern, lowland species (Schmitt 2009). There are differences 
among mountain aquatic and terrestrial species (Pauls et al. 2006). Aquatic ecosystems, and 
especially fast flowing streams provide stable environments over long time periods, in contrast to the 
majority of terrestrial habitats, thus becoming refugia during glaciations (Malicky 1983).

The few existing studies on aquatic mountain species show that populations inhabiting distinct 
regions may be genetically very different (e.g., Pauls et al. 2006, 2009; Lehrian et al. 2009). The 
cryptic genetic diversity usually stands in contrast with the lack of strongly differentiating 
phenotypic characters. Nonetheless, careful analysis of phenotypic traits may reveal fine differences, 
enabling the distinction of cryptic entities at the species level (e.g., Bálint et al. 2009). The number 
of phylogeographic studies analysing widespread aquatic mountain species of Europe is very 
limited. The published studies focus on several Trichoptera (e.g., Pauls et al. 2006, 2009; Lehrian et 
al. 2009) and Ephemeroptera species (e.g., Williams et al. 2006). To help fill this gap we studied the 
wide-spread caddisfly Rhyacophila tristis Pictet.

Here we present preliminary results of a larger-scale investigation of R. tristis on its entire range 
of distribution. The present results are based on a limited number of specimens collected in Central 
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Europe, which is only a fraction of the entire distribution range of the species. The analyses 
performed are also limited due to the sampling restricted to several mountains in Central Europe. 
Our hypothesis is that R. tristis populations inhabiting distinct Central European mountain ranges 
show stronger geographically associated genetic differences than terrestrial organisms occupying a 
similar range. 

Materials and methods

Target species and collecting localities

Rhyacophila tristis is the most widely distributed species of the Rhyacophila tristis Group sensu 
Schmid (1970). The Group has an entirely euromediterranean (sensu Bănărescu 1991) distribution. 
The species inhabits fast-flowing streams at altitudes between ~300-2000 m a.s.l.

In this study nucleotide sequences of 52 specimens were analysed. These were obtained from the 
Alps, Black Forest, Carpathians, Rila and Pirin (Fig. 1) and are part of a larger collection that covers

FIGURE 1. Collecting localities of Rhyacophila tristis specimens. Squares: R. tristis, triangles: R. aquitanica, 
diamonds: R. orghidani.
BÁLINT ET AL.12  ·   Zoosymposia 5  © 2011 Magnolia Press



the entire distribution range of the species. Additionally, 3 specimens of each of the 2 closely related 
species R. aquitanica McLachlan and R. orghidani Botoşaneanu were used as outgroups. These were 
collected in the Massif Central, France, and in the Apuseni Mountains, Romania, respectively. Male 
specimens were identified based on genitalia structures (diagnostic characters that were emphasized 
by, e.g., Malicky 2005). The distinction of R. tristis females and larvae from those of R. aquitanica
and R. carpathica is problematic. Their identity was confirmed by comparing the obtained 
nucleotide sequences with those from male R. tristis, R. aquitanica and R. carpathica (Botoşaneanu) 
using both phylogenetic and genetic distance criteria (Waringer et al. 2007, 2008).

Molecular methods and data analysis

DNA was obtained using phenol-chloroform extraction and ethanol precipitation (e.g., Reineke et al. 
1998) and commercial DNA extraction kits (Qiagen DNeasy Blood & Tissue Kit). Whenever 
possible, DNA was extracted from fresh specimens. However, in a few cases DNA was successfully 
extracted from older specimens stored in 70% ethanol for 5 years.

DNA was extracted from the abdomen of the male specimens. As Trichoptera generally don’t 
feed as adults, this is considered a contamination-safe method. In addition, the genitalia of males 
were macerated after proteinase K digestion, making conventional KOH maceration unnecessary. In 
the case of females the 2 hind legs were used for DNA extraction, as fertilized eggs in the abdomen 
may interfere with further molecular analyses of nuclear DNA. DNA was obtained from the 
abdomen of each larva after its digestive tract and parasites were carefully removed.

A part of the mitochondrial cytochrome oxydase I (COI) was amplified using universal primers 
Jerry (Simon et al. 1994) and S20 (Pauls et al. 2006). PCR was performed in 25 μL reaction volumes 
following Bálint (2008). PCR products were purified using commercial column-based gel extraction 
kits (Fermentas). Fragments were sequenced on an automatized ABI Prism 310 one-capillary and an 
automatized Beckman-Coulter CEQ 8800 eight-capillary sequencer at the Molecular Biology 
Center, Babeş-Bolyai University. The sequences were submitted into GenBank (http://
www.ncbi.nlm.nih.gov/) with accession numbers HM204650-HM204704 (R. orghidani  and R. 
tristis) and FJ514788, FJ514790, FJ514791 (R. aquitanica).

The sequences were aligned using the Clustal W algorithm (Thompson et al. 1994). The aligned 
sequences were manually checked for errors using the tracefiles in MEGA v. 4 (Tamura et al. 2007). 
We obtained an alignment containing 456 bp-long sequences for the 52 specimens. Sequence 
identities were checked using BLAST (Altschul et al. 1997). The nucleotide substitution model was 
selected using the Akaike Information Criterion in jModelTest (Posada 2008).

Bayesian inference of phylogenetic relationships was accomplished with MrBayes 3.2 
(Huelsenbeck & Ronquist 2001), using the previously selected substitution model (GTR+Γ). Two 
simultaneous and independent analyses were run for 4,000,000 generations. Trees were sampled in 
every 100 generations. The first 25% of the resulting trees were discarded as burn-in. The MCMC 
sampling was run using 12 chains (1 cold and 11 heated). The consensus tree was visualized in 
FigTree 1.2.1 (Rambaut 2009).

Overall mean Jukes-Cantor distances were calculated in DnaSP 4 (Rozas et al. 2003). Population 
genetic structures were analysed by AMOVA (Analysis of MOlecular VAriance) as implemented in 
Arlequin 3.11 (Excoffier et al. 2005) with 10,100 random permutations for statistical significance. 
Two major regions were designated for AMOVA. The western region contained sampling sites from 
the Alps and the Black Forest. Carpathian and Bulgarian sites were assigned to the eastern region.
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Results and Conclusions

The overall mean Jukes-Cantor distance among the sequences was d=0.02138. The specimens 
comprised 19 nucleotide haplotypes, and clustered into 2 major clades (Fig. 2). These clades entirely 
corresponded to western (Alps, Black Forest) and eastern (Carpathians, Pirin, Rila) populations, 
respectively. The Jukes-Cantor nucleotide diversity was d=0.0097 and d=0.0092 within the western 
and eastern groups, respectively, and d=0.0235 between the 2 clades.

No geographically associated genetic structure was found among the Carpathian specimens. 
Specimens of the western sampling sites formed 2 well-supported groups. One group contains 
specimens from the Western Alps, Lombardy, Piedmont and the Swiss canton of Vaud. The second 
group is formed from specimens collected in Tyrol, in the Black Forest and in Vaud.

Almost all genetic variation was attributed to differences between the 2 major regions (Table 1). 
Gene flow between the eastern and western populations seems completely stopped (FST=0.983 at 
p<0.001). There were no shared haplotypes between these regions.

TABLE 1. Analysis of molecular variance of Rhyacophila tristis populations.

Our hypothesis on the strong genetic differentiation of eastern and western populations is 
supported by the results. The absence of a link between Alpine and Carpathian populations is quite 
common in the case of (semi)aquatic species. Similar differentiation patterns were observed in the 
case of the caddisflies Drusus discolor (Rambur) (Pauls et al. 2006), R. aquitanica and R. carpathica
(Bálint et al. 2008), and Chaetopterygopsis maclachlani Stein (Lehrian et al. 2010). This stands in 
contrast with the majority of terrestrial species, where the connection between the Alps and the 
Carpathians is common (e.g., Varga & Schmitt 2008; Schmitt et al. 2009). The results present 
evidence for Pleistocene extramediterranean refugia for R. tristis at least during the Würm glaciation 
in the Carpathians. There are 7 mutation steps between the Carpathian and Alpine clades. There are 
also 7 mutation steps between the Carpathian clade and the sequenced 3 Bulgarian specimens. These 
relatively deep splits suggest an early divergence of the Carpathian clade from Alpine and Bulgarian 
populations. However, we have to emphasize that the divergence of the Carpathian and Balkan 
populations should be treated with care due to the very limited number of sequenced Bulgarian 
specimens.

The possibility that R. tristis recolonized the Carpathians post-glacially from a Balkan refuge 
cannot be excluded, as the number of analysed individuals is very low for Bulgaria. However, no 
shared haplotypes were found between the Carpathian and Bulgarian populations. Based on the 
preliminary results it seems plausible that glacial refugia existed for R. tristis both in the Carpathians 
and on the Balkan Peninsula. The importance of the Carpathians in the Pleistocene survival and 
differentiation of (semi)aquatic mountain species was already underlined by a number of studies 
(e.g., Bálint et al. 2009; Pauls et al. 2009; Ujvárosi et al. 2010).

 Variance components Percentage of variation

Among major regions 160.6039 (Va) 93.85

Among popula t ions  wi th in  
mountain ranges

7.56918 (Vb) 4.42

Within populations 2.94717 (Vc) 1.72
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The genetic structure observed among populations in the western group can be explained by the 
existence of multiple extramediterranean glacial refugia around the Alps. Areas north of the Alps 
were certainly not repopulated from the Carpathians. Recolonization of these areas from the Italian 
peninsula seems also unlikely, but this possibility cannot be entirely excluded due to the small 
number of analysed Southern Alps specimens. Rhyacophila tristis is also present on the Iberian 
Peninsula. However, recolonization from this direction is unlikely as the species is completely 
missing from the Massif Central. There are no known links between the Pyrenees and the Western 
Alps, as the Massif Central is inhabited exclusively by the closely related R. aquitanica according to 
our present knowledge.

FIGURE 2. Phylogenetic relationships of Rhyacophila tristis specimens based on B/MCMC inference. 
Posterior probability values pp>0.95 are shown.
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The 2 distinct western R. tristis lineages coexist at the sampling locality in Vaud, Switzerland 
(Figs. 1, 2). This area may be a secondary contact zone for the western 2 lineages. Secondary contact 
between eastern and western lineages in this region of the Alps is a common phenomenon, which has 
also been discussed for Limnephilidae (Graf et al. 2009) and Rhyacophila simulatrix (Graf & 
Waringer 2005). One of these probably extended its range from a refuge east of the Alps. The second 
lineage most probably came from the south-western parts of the Alps. Engelhardt (2009) showed that 
areas in the Western Alps served as refugia also for the closely related R. pubescens Pictet. This 
region is known as refugia for terrestrial species, too (e.g., the Marbled White butterfly, Habel et al. 
2005). The geographic origin of the source populations can be determined only after the analysis of 
more specimens collected in areas around the Alps, Tatra and Dinaric Alps.

The phylogeographic analysis of R. tristis across its entire distribution range may bring new 
information about the diversity of the European mountain aquatic fauna. It is especially important to 
include more populations in the analyses, collected on the 3 Mediterranean peninsulas. This may 
help to understand the role of extramediterranean versus Mediterranean refugia in the recolonization 
of aquatic habitats after glaciations.

It is plausible that further cryptic taxonomic entities are present within what is currently 
recognized as R. tristis. Kumanski (1987) already described a very similar species from Bulgaria (R. 
pseudotristis). We hypothesize that molecular analyses of populations inhabiting distinct mountain 
ranges especially on the southern areas of Europe will reveal old cryptic taxonomic entities. 
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