The carpology and taxonomy of some Chinese Corispermum (Amaranthaceae s.l.)

ALEXANDER P. SUKHORUKOV1,2, MINGLI ZHANG1,3* & MAYA V. NILOVA2

1 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China; zhangml@ibcas.ac.cn
2 Department of Higher Plants, Biological Faculty, Moscow Lomonosov State University, 119234, Moscow, Russia; suchor@mail.ru
3 Institute of Botany, Chinese Academy of Sciences, Beijing, China.

*Corresponding author

Abstract

Corispermum iljinii from Qinghai and Ningxia provinces and C. nanum from Xizang (Tibet) are described as new species. The new variety C. dutreuilii var. montanum is described. Lectotypes of C. declinatum, C. elongatum and C. macrocarpum have been designated. The fruit anatomy of 16 Chinese taxa has been investigated for the first time. Both molecular and carpological data support the specific status of C. ellipsocarpum. The general fruit structure of Corispermoideae is specified and discussed.

Key words: Chenopodiaceae, China, distribution, fruit anatomy, lectotypification, new taxon

Introduction

The genus Corispermum (Linnaeus 1753: 4) comprises at least 70 annual taxa distributed in Eurasia and North America. Central Asia appears to be one of the richest regions in Corispermum species. Twenty-seven species are recorded in temperate China (Zhu et al. 2003). All of them belong to various groups distinguished in having a perianth with 1(−2) hyaline segments. Concerning the other reproductive characters, especially in fruit morphology, the Chinese taxa highlight an high differentiation. However, their relationships have so far been insufficiently investigated, involving contradictory morphological data (Popov 1959, Klokov 1960, Mosyakin 1994, 1997), carpological investigations (Sukhorukov 2007) and recently combined molecular studies (Xue & Zhang 2011). Nevertheless, molecular phylogeny confirms the existence and distant position of at least some aggregates, such as C. puberulum Iljin s.str. (Iljin 1929: 645) and C. puberulum var. ellipsocarpum C.P.Tsien & C.G.Ma (Kung et al. 1978: 118), C. macrocarpum Bunge (Bunge 1859: 226) and C. macrocarpum var. rubrum Fu & Wang-Wei (Liou 1959: 84). Despite the widely accepted view that there are transitional forms between some species (Grubov 1966), or that the number of taxa in the genus might be reduced (Zhu et al. 2003), both fine carpology and molecular phylogeny currently reveal a considerable taxonomic diversity in the genus that can be regarded as morphologically cryptic. Among all the traditional methods, fruit anatomy appears to be pivotal for taxonomy and species delimitation when the morphological data do not allow precise identification (Sukhorukov 2007). For the majority of taxa known from China, the fruit anatomy has never been studied, and the present research is focused on filling the existing gaps in the carpology of Chinese taxa. The particular aims of our study are:

(1) taxonomic revision of the Corispermum specimens in Chinese collections, including lectotypifications where necessary;

(2) carpological investigations of Chinese species with reference to their taxonomy as well as precise description of the carpological characters of the genus in general.

Materials and Methods

Material preserved in the herbaria LE, MW, PE, XJA, and XJBI (herbarium abbreviations according to Thiers 2008+) was studied. One or two loose fruits from some specimens were used for the carpological analysis (see the Appendix for the
list of the specimens used for the fruits analysis). The cross-sections were made by hand. Before cutting, the material was soaked for a few days in a solution of water, glycerin and ethyl alcohol mixed in equal proportions. According to previous investigation (Sukhorukov 2007), cross-sections of the central part of the fruit provide the most valuable information on the differences in pericarp structure. This method is also used here for the carpological analysis.

FIGURE 1. Holotype of C. iljinii (PE).
Results

The new taxa

Corispermum iljinii Sukhor. & M.Zhang, sp. nov.

Type:—CHINA. Ningxia: Zhongwei, October 1964, Liu s.n. (holotype PE-01659707!) (Fig. 1).

Diagnosis:—Annual to 30 cm, branched from the base, with ascending shoots, glabrous or sparsely pubescent. Leaves lanceolate or obovate, 3–5 mm wide. Spikes elongated. Bract ovoid, completely covering the fruit. Perianth of 1 segment. Fruit ovoid, 2.7–3 × 1.6–1.8 mm, fruit surface (Fig. 2) without stellate hairs but with conspicuous areas where the pericarp is detached from the seed coat (looking like warts), scattered papillae and brown pigment cells, round or acute at apex, wing not visible with the naked eye.

Ecology and distribution:—A label attached to additional specimens examined (Qinghai, Kokonor) contains information about the ecology of C. iljinii: “Plain with sparse herbs (many chenopods and grasses), some small sand dunes with denser vegetation; margins mostly planted with Populus or with Hippophae thickets, soils often incrusted with salt. Dry slopes dominated by tussocks of Achnatherum. Growing in open sandy areas, commonest on sand dunes”. C. iljinii is known in the provinces Ningxia and Qinghai.

IUCN Red List Category:—The appropriate data on abundance and/or distribution of the taxon is lacking. It can be included in the Data Deficient (DD) as well as Not Evaluated (NE) categories of IUCN Red List categories (IUCN 2010) as there is inadequate information to make a direct or indirect assessment of its risk of extinction based on its distribution and/or population status.
Etymology: —The new species is dedicated to Modest M. Iljin (1889-1967), Professor at the Leningrad (St.-Petersburg) Botanical Institute, an expert on the Eurasian Chenopodiaceae.

Taxonomical notes: —All specimens of *C. iljinii* used to be identified as *C. heptapotamicum* or *C. declinatum*. The most remarkable character of the new species is the wart-like fruit surface with no marginal wing. The fruits resemble those of *C. tylocarpum*, but the length/width ratio is 1.5–1.7:1 (not 2:1), and also there are some differences in fruit anatomy (details provided below). The name *C. iljinii* cannot be applied to the varieties of *C. tibeticum* and *C. lepidocarpum* described by Huang (1995) from Qinghai province due to the differences in fruit characters.

Additional specimens seen (Fig. 3): —CHINA. Ningxia: Tongxin, 13 August 1981, Yu & Xu 1784 (PE-01659710).

Qinghai, Kokonor: Gonghe Xian, Kyikug Xiang: along the Kyikug He river, NW of its junction with the Huang He (Yellow river), elev. 2500 m, 36°12‘N, 100°43‘E, heavily grazed broad plain and adjacent dry slopes, 18 September 1996, Ho, Bartholomew, Watson et Gilbert 3095 (PE-01659709, only the specimen on the left side, the specimen on the right side belongs to *C. pseudofalcatum*).

FIGURE 3. The distribution of *C. iljinii* (dots), *C. nanum* (triangles) and *C. dutreuilii* var. montanum (asterisk) based on the specimens seen.

Corispermum nanum Sukhor. & M. Zhang, *sp. nov.*

Type: —CHINA. Xizang [Tibet], Saga, Nyalam road, 17 August 2011, Yu, Hou & Zhang 5607 (holotype PE-2264191 !) (Fig. 4).

Diagnosis: —Dwarfish, densely pubescent annual up to 6 cm with single stem or with short lateral branches. Leaves linear, to 2 mm wide.

Inflorescence very short producing a few flowers with a perianth consisting of one segment. Bracts slightly shorter than fruits (the fruit margins are visible). Fruit ovoid, 2.5–2.7 × 2 mm, glabrous, apex with two-fid tip, no visible detachments of the pericarp from the seed coat, marginal wing conspicuous (0.3–0.4 mm) (Fig. 5).

Ecology and distribution: —Sandy substrates in river basins. It is probably the highest-altitude representative of *Corispermum* (alt. 4000–4700 m). The species was collected from a single locality (Fig. 3) with many specimens being deposited in PE.

84 • *Phytotaxa* 172 (2) © 2014 Magnolia Press
IUCN Red List Category:—The appropriate data on abundance and/or distribution of the taxon is lacking. It can be included in the Data Deficient (DD) as well as Not Evaluated (NE) categories of IUCN Red List categories (IUCN 2010) as there is inadequate information to make a direct or indirect assessment of its risk of extinction based on its distribution and/or population status.

Taxonomical notes:—The new species differs from all Corispermum taxa known from China and adjacent states (Iljin 1936, Grubov 1966, Zhu et al. 2003) by the linear leaves up to 2 mm. The fruit anatomy (Fig. 6) is similar to some other Tibetan species (C. lhasaense, C. falcatum, and C. pseudofalcatum), but the fruit and its wing are significantly smaller.

FIGURE 4. Holotype of C. nanum (PE).
FIGURE 5. Fruit of Corispermum nanum.

FIGURE 6. Cross-section of the fruit in its middle portion of C. nanum. Abbreviations: P, pericarp (presented by the thin-walled cells); sc, seed coat; pe, perisperm. Scale bar: 20 µm.
Corispermum dutreuilii Iljin var. montanum Sukhor. var. nova.

Type:—CHINA. Tibet [Ngari pref.] 32°31′N 80°04′E, Shiquan [Sênggê] River, alt. 3800 m, 3 August 1984, Zhengxi An 1-10092 (holotype XJA! as C. montanum) (Fig. 7).

Diagnosis:—C. dutreuilii var. montanum differs from the nominal variety by the stellate pubescence and the thickness of the fruit (0.6–0.8 mm) in comparison with the type variety which has glabrous fruits with thickness 0.3–0.4 mm.

FIGURE 7. Holotype of C. dutreuilii var. montanum (XJA).
Ecology and distribution:—Sandy river basins. The new variety is known only from the locus classicus (Fig. 3).

IUCN Red List Category:—The appropriate data on abundance and/or distribution of the taxon is lacking. It can be included in the Data Deficient (DD) as well as Not Evaluated (NE) categories of IUCN Red List categories (IUCN 2010) as there is inadequate information to make a direct or indirect assessment of its risk of extinction based on its distribution and/or population status.

Taxonomical notes:—As in the nominal variety of Corispermum ellipsocarpum Iljin (Iljin 1937), the new variety is almost glabrous, up to 25 cm tall, branched from the base. Leaves lanceolate or oblong, to 5 mm wide, bracts almost completely covering the fruits. Inflorescence loose, basally often interrupted. Fruit triangular at apex, 3.5–3.8 × 2.2 mm, with conspicuous wing 0.5–0.8 mm, with stellate pubescent fruits.

Corispermum ellipsocarpum (Tsien & Ma in Kung et al. 1978: 118) Sukhor. & Zhang, comb. nova.

Bas.: Corispermum puberulum (Iljin 1929: 645) var. ellipsocarpum.

Type:—CHINA. Hopei, Weichang co., East Mts., sands, 18 September 1960, Wang 3066 (holotype PE-00934051!).

Taxonomical notes:—Corispermum ellipsocarpum differs from Corispermum puberulum by the obconical inflorescence, glabrous fruits, and details of the fruit anatomy (see carpological results below). In addition the species are nested in different clades on the molecular tree (Xue & Zhang 2011).

Lectotypification of some names in Chinese Corispermum

Corispermum declinatum Stephan ex Iljin (1928: 69).

Type (lectotype here designated by Sukhorukov & Zhang):—RUSSIA. Sibiria: Sievers 788 (LE!, specimen on the left side).

Notes:—There is one sheet at LE, bearing one whole plant (left-hand specimen) and a small fragment (right-hand specimen) that are not part of a single gathering, so the Art. 9.17 of the ICN (McNeill et al. 2012) cannot be applied. We here choose the left-hand specimen and designated in as the lectotype of the name Corispermum declinatum.

Type (lectotype, here designated by Sukhorukov & Zhang):—RUSSIA. Amur: sandy bank of Amur river near Khungar, 11 July 1855, Maximowicz s.n. (LE!).

Notes:—Eleven sheets that are part of the original material are preserved at LE, each bearing one plant whose features [leaves elongated (the lower ones up to 8 cm long), linear or lanceolate, inflorescence interrupted, and fruits glabrous with conspicuous wing] match the diagnosis. We here designated the specimen collected by Maximowicz in the locality Amur since it is included in the description of C. elongatum (Bunge 1859).

Type (lectotype, here designated by Sukhorukov & Zhang):—RUSSIA. Amur: 20 September 1854, Maximowicz s.n. (LE!).

Notes:—Iljin (1936) and some electronic resources (e.g., IPNI 2013) indicate that C. macrospermum Trautvetter (1884: 130) is a nomenclatural synonym of C. macrocarpum. However, Trautvetter (1884) did not describe C. macrospermum as a separate species, and the epithet “macrospermum” is indeed a typographical error (see also correct citation in Trautvetter 1884: 130, “C. macrospermum [macrocarpum] Bunge in Maximowicz.”

New data on the Chinese Corispermum species

The fruit anatomy of 22 taxa was studied in the present investigation, of which 16 were carpologically analyzed for the first time (Table 1). The specimen of C. retortum W.Wang & P.Y.Fu (Liou 1959: 82) at LE, chosen for carpological examination cited in the previous data (Sukhorukov 2007), was erroneously identified, and now we provide corrected parameters about the carpology of this species. The carpological characters for the remaining taxa correspond with the earlier data taken from other locations (Sukhorukov 2007).
TABLE 1. The most conspicuous fruit characters of the *Corispermum* taxa studied

<table>
<thead>
<tr>
<th>Fruit length-width-thickness</th>
<th>Hairs on the pericarp surface</th>
<th>Papillae on pericarp</th>
<th>Pericarp detachments (µm)</th>
<th>Thickness of outer pericarp layer (µm)</th>
<th>Number of macrosclereid layers in central part of fruit</th>
<th>Wing shape and length in cross-section</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. candelabrum</td>
<td>5 × 3</td>
<td>0.55–0.7</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>20–30</td>
</tr>
<tr>
<td>C. chinagicum var. stellipile</td>
<td>5 × 3</td>
<td>0.55–0.7</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>20–25</td>
</tr>
<tr>
<td>C. dilutum</td>
<td>4 × 3.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>25–37</td>
<td>(0)1 inner</td>
</tr>
<tr>
<td>C. dilutum var. hebecarpum</td>
<td>0.6–0.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>20–30</td>
<td>1–2 inner</td>
</tr>
<tr>
<td>C. dutreuilii</td>
<td>3–4.2</td>
<td>2 × 0.55–0.7</td>
<td>–</td>
<td>–</td>
<td>(to 100)</td>
<td>25–40</td>
</tr>
<tr>
<td>C. dutreuilii var. montanum</td>
<td>3.5–3.8</td>
<td>× 2.2</td>
<td>+</td>
<td>–</td>
<td>(to 50)</td>
<td>37–50</td>
</tr>
<tr>
<td>C. falcatum</td>
<td>3.5</td>
<td>3</td>
<td>× 0.6–0.7</td>
<td>–</td>
<td>–</td>
<td>40–50</td>
</tr>
<tr>
<td>C. huanghoense</td>
<td>5</td>
<td>× 4</td>
<td>0.75–0.8</td>
<td>+</td>
<td>–</td>
<td>20–30</td>
</tr>
<tr>
<td>C. iljinii</td>
<td>2.7–3</td>
<td>1.6–1.8</td>
<td>× 0.4–0.5(0.7)</td>
<td>–</td>
<td>+</td>
<td>(to 50)</td>
</tr>
<tr>
<td>C. lhasaense</td>
<td>4.5</td>
<td>3–3.5</td>
<td>× 0.75–0.85</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C. macrocarpum var. microstachyum</td>
<td>4–4.5</td>
<td>× 3–3.5</td>
<td>× 0.5–0.6</td>
<td>–</td>
<td>+</td>
<td>(to 130)</td>
</tr>
<tr>
<td>C. nanum</td>
<td>2.5–2.7</td>
<td>2 × 0.35–0.45</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>25–30</td>
</tr>
<tr>
<td>C. pamiricum</td>
<td>3.0</td>
<td>2 × 0.65–0.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>25–35</td>
</tr>
<tr>
<td>C. pamiricum Iljin var. pilocarpum</td>
<td>3.5</td>
<td>2 × 0.4–0.6</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>(to 80)</td>
</tr>
<tr>
<td>C. patelliforme</td>
<td>3.5</td>
<td>3–4 × 0.5–0.65</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>20–30</td>
</tr>
<tr>
<td>C. praecox</td>
<td>3.8</td>
<td>4–4.5</td>
<td>× 0.5–0.6</td>
<td>–</td>
<td>–</td>
<td>65–100(–125)</td>
</tr>
<tr>
<td>C. pseudofalcatum</td>
<td>3.5–4.5</td>
<td>× 3.5–4</td>
<td>× 0.45–0.65</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C. retortum</td>
<td>3.5–3.7</td>
<td>2–4</td>
<td>× 0.3–0.55</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C. stenolepis</td>
<td>4</td>
<td>3.5–4 × 0.5–0.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>25–37</td>
</tr>
</tbody>
</table>

Discussion

Do anatomical data confirm the suggested relationship of the Chinese taxa based on fruit morphology?

Relationships between Chinese *Corispermum* taxa based on the assumption that only fruit-morphology provides the most important visual diagnostic characters have been proposed many times (Popov 1959, Mosyakin 1994, 1997).
However, these morphological conclusions should be considered as rather speculative owing to the similarity of fruit outlines in some taxa with differing anatomy and occupying different positions in molecular trees (Sukhorukov 2007, Xue & Zhang 2011). Despite the impossibility of preparing a global molecular phylogeny of the genus due to the inaccessibility of some plant material, we used carpological data to compare the relationships of some taxa that were not included in previous carpological discussions (Sukhorukov 2007). These comparisons are given in the Table 2.

TABLE 2. Comparison of relationships between taxa based on morphological data proposed by other authors and our carpological results.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C. chinganicum var.</td>
<td>–</td>
<td>–</td>
<td>C. chinganicum s.l.</td>
<td>differs from type variety in many characters (fruit length and thickness, pubescence, wing length, sclereid layers)</td>
</tr>
<tr>
<td>stellipile</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. dilatatum var.</td>
<td>–</td>
<td>–</td>
<td>C. dilatatum s.l.</td>
<td>closely related to C. dilatatum s.str., differs in pubescent fruits and larger wing</td>
</tr>
<tr>
<td>hebecarpum</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. huanghoense</td>
<td>–</td>
<td>related to C. candelabrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>related to C. falcatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. lhasaense</td>
<td>–</td>
<td>related to C. falcatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>related to C. macrocarpum s.l.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microstachyum</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. macrocarpum var.</td>
<td>–</td>
<td>C. macrocarpum s.l.</td>
<td></td>
<td>related to C. macrocarpum, but with pericarp detachments</td>
</tr>
<tr>
<td>rubrum</td>
<td>–</td>
<td>C. macrocarpum s.l.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. pamiricum var.</td>
<td>–</td>
<td>C. pamiricum s.l., probably synonym of C. gelidum</td>
<td>closely related to C. pamiricum s.str.; both differ from C. gelidum in the wing outline in cross-section</td>
<td></td>
</tr>
<tr>
<td>pilocarpum</td>
<td>–</td>
<td>fruit pubescence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. praecox</td>
<td>–</td>
<td>–</td>
<td>might be related to C. tylocarpum</td>
<td>not related to C. tylocarpum</td>
</tr>
<tr>
<td>C. pseudofalcatum</td>
<td>–</td>
<td>related to C. falcatum</td>
<td>related to C. falcatum</td>
<td>both species have the same carpology; differ from each other in fruit dimensions, thickness of outer pericarp layer, and larger wing</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>C. puberulum var.</td>
<td>–</td>
<td>differs from type variety in glabrous fruits and length of wing</td>
<td>C. puberulum s.l.</td>
<td>the same characters as in Tsien & Ma, and absence of pericarp detachments</td>
</tr>
<tr>
<td>ellipsocarpum</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. retortum</td>
<td>close to C. marschallii</td>
<td>close to C. sect. Pallasiana (C. leptopterum, C. sibiricum, C. bardunovii, C. macrocarpum and North American species)</td>
<td>not related to C. marschallii, C. leptopterum, C. sibiricum or C. bardunovii</td>
<td></td>
</tr>
</tbody>
</table>

The differences among some infraspecific taxa are indeed greater than that indicated earlier, especially C. chinganicum Iljin (1929: 648) var. stellipile C.P.Tsien & C.G.Ma (Kung et al. 1978: 118) and C. puberulum var. ellipsocarpum, which are described on the basis of presence/absence of stellate indumentum on the pericarp surface. Although the hairiness of the fruit was previously considered as a character with good taxonomic value at infraspecific level (Kitagawa 1935, Baranov 1969a, 1969b, Zhu et al. 2003), it can be taxonomically more convenient in the cases where additional carpological details are available. In the case of both C. puberulum s.s. and C. puberulum var. ellipsocarpum, there is a complex of data supporting separate positions of the two taxa: (1) nesting in different clades of the ML molecular tree (Xue & Zhang 2011), (2) several characters (different inflorescence shape, pericarp indumentum, fruit thickness, presence of pericarp detachments, length of fruit wing). All these details provide good reasons to raise the variety C. puberulum var. ellipsocarpum to specific rank (as C. ellipsocarpum).

General conclusions about the fruit anatomy of Corispermum

All recognized Corispermum species have now been studied carpologically, and the additional material investigated in the present article did not reveal any substantial differences in the fruit anatomy of the genus. The analysis of the Chinese material allowed us to make more precise some general fruit characters given by Butnik (1981)
and Sukhorukov (2007, 2009), especially the occurrence of large air cavities (up to 400 μm) between the pericarp and the seed coat in the species having a smooth (not wave-like) pericarp with a well-developed wing [especially C. huanghoense C.P.Tsien & C.G.Ma (in Kung et al. 1978: 118), C. pseudofalcatum C.P.Tsien & C.G.Ma (in Kung et al. 1978: 119)]. This characteristic has been evolved only in ‘winged’ Corispermum in contrast to the similar fruits of all species belong to Anthochlamys Fenzl (1837: 300) (Sukhorukov & Konstantinova 2012). We can also conclude that the well developed wing (more than 0.6–0.7 mm long) occurs in all taxa always thin and narrowly triangular in cross-section. On the other hand the short-winged (up to 0.3 mm) taxa have broadly triangular fruit margins. The average wing length appears to be triangular in cross-section.

In contrast to other Chenopodiaceae, which are often heterocarpous or heterospermous, the fruits and seeds of Corispermum species seem to be monomorphic. This can be explained by the reduction of 3- or several-flowered cymes to solitary flower. It is well known that the different types of morphological and anatomical fruit/seed heteromorphism have evolved within one cyme in at least a part of the Chenopodioidae (Kondorskaya 1983, Veselova & Kondorskaya 1990) or Suaedоideae (Iljin 1936). In Corispermum (as well as in other Corispermoideae) the solitary flowers are aggregated in spikes with no differences in the developmental stages of the flowers within the partial inflorescences. In general the subfamily Corispermoideae Raf. is distinguished from other family members in having the pericarp divided in two different topographical zones: parenchymatous uppermost layers and sclerenchyma below, without any crystalliferous layers in the fruit wall (see Sukhorukov 2008, Kadereit et al. 2010, Sukhorukov & Zhang 2013, Sukhorukov et al. in prep.). The similar pericarp structure in one of two heterocarpic types in Axyris Linnaeus (1753: 979) (Chenopodioidae-Axyrideae: Sukhorukov 2005, 2011) is a synapomorphic trait which has arisen independently in the Corispermoideae and Chenopodioidae subfamilies. The seed coat of the Corispermoideae is thin, mostly up to 10 μm, and consists of 2(−3) equal or subequal [Agriophyllum Bieberstein (1819: 6)] layers filled with tannins but without stalactites in the outer cell walls of the testa (the outer seedcoat layer).

Acknowledgments

We are grateful to D. Iamonico (editor of Caryophyllales section of “Phytotaxa”), Irina Belyaeva (Royal Botanic Gardens, Kew), Geoffrey Harper (Royal Botanic Garden Edinburgh), and Maria Kushunina (Lomonosov Moscow State University) for discussion of some parts of the present article, Xian-chun Zhang and Qi Lin (PE Herbarium, Institute of Botany, Chinese Academy of Sciences, Beijing), Ying Feng (XUB Herbarium, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi), and Dun-yan Tan (XJA Herbarium, Xinjiang Agricultural University, Urumqi) for help in working in herbaria and also the herbaria staff who allowed fruit material to be obtained for the investigation. The investigation was carried out with the support of the Chinese Academy of Sciences visiting professorship for senior international scientists, grant 2012T1Z0020, China National Key Basic Research Program (grant 2014CB954201), and grant of the Russian Fund for Basic Research (project 14-04-00136-a).

References

http://dx.doi.org/10.5962/bhl.title.10825
The fruit anatomy of the taxa marked with an asterisk have been studied for first time.

C. candelabrum Iljin: Beijing, Marco Polo Bridge, 18 August 1962, *C. C.P. Tsien & C.G. Ma* 011 (PE-00540111);
C. dilutum (Kitag.) C.P.Tsien & C.G.Ma: Liaoning, Zhangwu, October 1952, *S.E. Liu* 5420 (PE-01898113);
C. dilutum (Kitag.) C.P.Tsien & C.G.Ma var. *hebecarpum* C.P.Tsien & C.G.Ma: Nei Mongol, Chifeng, September 1952, *S.E. Liu* 5146 (PE-01801947);
C. dutreuilii Iljin: 1) S Xinjiang, VII.1961, anonym (XJBI-071080); 2) S Xinjiang, Yutian, alt. 2400 m, July 1991, Guiling Zhou *HT-015* (XJA-00035450);
C. dutreuilii Iljin var. *montanum* Sukhor.: Tibet, [Nhari pref.] 32°31′N 80°04′ E, Shiquan [Sênggê] River, August 1984, Zhengxi An 1-10092 (XJA);
C. falcatum Iljin: Xizang, Naidong, alt. 3650 m, July 1975, *Z.Y. Wu* 75-758 (PE-00540347);
C. huanghoense C.P.Tsien & C.G.Ma: Henan prov., Fengqiu, June 1965, *D.D. Xu* 68 (PE-00540368);
C. iljinii Sukhor. & M.Zhang: Xizang, Saga, Nyalam road, August 2011, *S.X. Yu, Y.t. Hou & X.X. Zhang* 5607 (PE, holotype);
C. macrocarpum Bunge var. *microstachyum* P.Y.Fu & W.Wang: Liaoning, Zhangwu, October 1952, *S.E. Liu* 5420 (PE-00024036);
C. macrocarpum Bunge var. *rubrum* P.Y.Fu & W.Wang: Liaoning, Zhangwu, October 1952, *S.E. Liu* 5407 (PE-00024044, isotype);
C. nanum Sukhor. & M.Zhang: Xizang, Saga, Nyalam road, August 2011, *S.X. Yu, Y.T. Hou & X.X. Zhang* 5607 (PE, holotype);
C. pamiricum Iljin: 1) Xizang, Lazi, August 1961, *J.W. Zhang* 2727 (PE-00540414); 2) Qinghai, Kokonor lake, July 1975, *B.Z. Guo & W.Y. Wang* 11699 (PE-01801973);
C. pamiricum Iljin var. *piloarpum* C.P.Tsien & C.G.Ma: 1) Xizang, Ritu, August 1976, *Qingzang Team* 13656B (PE-00640936, holotype); 2) Xizang, Ritu, alt. 4300 m, August 1976, *Qingzang Team* 76-9128 (PE-00540419); 3) Xinjiang, Tashkurgan, July 1991, Guiling Zhou *HT-015* (XJA-00035441);
C. patelliforme Iljin: 1) Ningxia prov., Kokoputu, September 1933, *Y.Y. Pai* 221 (PE-00540424); 2) Gansu prov., August 1956, *H.W. Kung* s.n. (PE-00540429);
C. praecox C.P.Tsien & C.G.Ma: 1) Henan, Kaifeng, June 1932, *K.S. Hao* 3442 (PE-00540371); 2) Henan prov., Fengqiu, June 1965, *C.X. Xu et al.* 108 (PE-00934049 & PE-00540436, holotype & isotype, respectively);
C. pseudofalcatum Iljin var. *pilocarpum* C.P.Tsien & C.G.Ma: *Xizang*, Shigatse, August 1960, *G.X. Fu* 789 (PE-00934050);
C. puberulum Iljin var. *ellipsocarpum* C.P.Tsien & C.G.Ma: Hepe, Chengde, September 1962, *W. Wang* 3066 (PE-00934051);
C. retortum W.Wang & P.Y.Fu: Heilongjiang prov., Duerbote, September 1951, *D.C. Zhao & Y.L Zhang et al.* 973 (PE-00024046);