Systematic analyses of *Ophiocordyceps ramosissimum* sp. nov., a new species from a larvae of Hepialidae in China

TING-CHI WEN1,2, YUAN-PIN XIAO1, WEN-JING LI2, JI-CHUAN KANG1* & KEVIN D. HYDE2

1The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, Guizhou Province, P.R. China
* email: bcec.jckang@gzu.edu.cn
2Institute of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand

Abstract

A new species, *Ophiocordyceps ramosissimum* sp. nov., is described and illustrated. It was associated with larvae of *Phassus nodus* (Hepialidae) collected from Xuefeng Mountains, Hunan Province, China. It differs from similar species in having branched stromata without a sterile apex, superficial ascomata, and very wide asci and ascospores and in its occurrence on *Phassus nodus* in living roots or trunks of *Clerodendrum cyrtophyllum*. Multi-gene phylogenetic analysis of 5.8S-ITS rDNA, nrSSU, EF-1α, and RPB1 gene loci also confirmed the distinctiveness of this new species.

Keywords: new species, multi-gene phylogeny, *Clerodendrum cyrtophyllum*

Introduction

The genus *Cordyceps* Fr. (*Clavicipitaceae, Hypocreales, Ascomycota*) has been separated and placed into three families and five genera—*Tyrannicordyceps* (*Clavicipitaceae*) (Kepler et al. 2012), *Metacordyceps* (*Clavicipitaceae*), *Elaphocordyceps* (*Ophiocordycipitaceae*), *Ophiocordyceps* (*Ophiocordycipitaceae*) and *Cordyceps* (*Cordycipitaceae*) (Sung et al. 2007a). Most of its members are pathogens of insects and spiders, and some grow on the hypogeous fungus, *Elaphomyces* spp. (Wen et al. 2013). Many *Cordyceps* species such as *Ophiocordyceps sinensis*, *Cordyceps militaris* and *C. takaomontana* are important as they have been used in traditional Chinese medicines in China, Japan, Korea and other eastern Asian countries.

Cordyceps sensu lato is one of the most important fungal groups of invertebrate pathogens (Hywel-Jones 2001) with more than 500 species (Index Fungorum 2013). Although many *Cordyceps* species have been transferred to *Ophiocordyceps* or other genera, many species have yet to be restudied in this large group.

Ophiocordyceps is the largest genus of *Cordyceps sensu lato* and Sung et al. (2007a) reported that there are more than 150 *Ophiocordyceps* species, while 140 species were listed by Kirk et al. (2008). There are more than 180 epithets assigned to *Ophiocordyceps* in Index Fungorum (2013), however, some of them have been synonymised with other genera. Most species of *Cordyceps sensu lato* have been collected from hosts on leaves or in soil, but there are about 50 species that parasitize insects in dead wood, and a few species are known from insects in living tree trunks (Kobayasi & Shimizu 1983, Samson & Evans 1985, Li et al. 2008).

We recently introduced a new species, *Ophiocordyceps xuefengensis*, which parasitizes *Phassus nodus* Chu & Wang collected from the living roots or trunks of the medicinal plant *Clerodendrum cyrtophyllum* Turcz (Wen et al. 2013). In this study, a second *Ophiocordyceps* species was found parasitizing the same insect in the living trunk or root of *C. cyrtophyllum* in south China. This species is different from all other *Cordyceps sensu lato* species in morphology and combined multi-gene phylogeny analysis.
Ophiothecium ramosissimum sp. nov. from China

Acknowledgments

We thank Ms. Zhu R.C. for kindly providing us the specimens. This work was supported by the National Natural Science Foundation of China (No. 31200016), and the Modernization of Traditional Chinese Medicine Program of Guizhou Province (No. [2012]5008).

References

http://dx.doi.org/10.1017/s0953756204000607

http://dx.doi.org/10.1016/j.micres.2013.02.010

http://dx.doi.org/10.1093/oxfordjournals.molbev.a025813

http://dx.doi.org/10.1126/science.1078155

http://dx.doi.org/10.2307/2408678

TABLE 2 (continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>Host</th>
<th>Habit</th>
<th>Stromata</th>
<th>Ascomata</th>
<th>Asci</th>
<th>Ascospores</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. rubiginosperithecicata</td>
<td>Campsosternus auratus larva</td>
<td>Soil, single, 40–90 × 5 mm, with sterile apex</td>
<td>Superficial, elongated-ovate, 520–600 × 300 µm</td>
<td>6 µm wide</td>
<td>Long cylindrical, multiseptate, not breaking into secondary ascospores, 1–1.2 µm wide</td>
<td>Liang (2001)</td>
<td></td>
</tr>
<tr>
<td>O. stylophora</td>
<td>Elaterid larva</td>
<td>Dead wood</td>
<td>Single, occasionally 2, 15–45 × 1.5–2 mm</td>
<td>Entirely embedded or at right angles to the surface, ovoid, 240–420 × 144–240 µm</td>
<td>Cylindric-clavate, 170–220 × 8–10 µm</td>
<td>Fusoid-cylindric, multiseptate, not breaking into secondary ascospores, 102–164 × 2–3 µm</td>
<td>Mains (1941)</td>
</tr>
<tr>
<td>O. xuefengensis</td>
<td>Hepialid larva</td>
<td>Living trunk or upper root near soil</td>
<td>Solitary or several, 140–460 × 2–7 mm</td>
<td>Superficial, long ovoid, 466–625 × 161–318 µm</td>
<td>Cylindrical, 191–392 × 4.5–8.9 µm</td>
<td>Thread-like, multiseptate, not breaking into secondary ascospores, 130–380 × 1.4–5.2 µm</td>
<td>Wen et al (2013)</td>
</tr>
</tbody>
</table>

http://dx.doi.org/10.3732/ajb.1100124

http://dx.doi.org/10.1017/s0953756203006378

http://dx.doi.org/10.2307/3754779

http://dx.doi.org/10.1093/bioinformatics/12.4.357

http://dx.doi.org/10.1016/s0007-1536(42)80017-0

http://dx.doi.org/10.1073/pnas.1117018109

http://dx.doi.org/10.1017/s095375620400139x

http://dx.doi.org/10.3114/sim.2007.57.01

http://dx.doi.org/10.1016/j.ympev.2007.03.011

http://dx.doi.org/10.1093/molbev/msr121

http://dx.doi.org/10.11646/phytotaxa.123.1.2