Copyright © 2010 • Magnolia Press

Article

The fate of Robinsonia (Asteraceae): sunk in Senecio, but still monophyletic?

PIETER B. PELSER¹, ERIC J. TEPE^{2,3}, AARON H. KENNEDY^{4,5} & LINDA E. WATSON⁴

¹University of Canterbury, School of Biological Sciences, Private Bag 4800, Christchurch 8140, New Zealand; e-mail: pieter.pelser@canterbury.ac.nz.

²University of Cincinnati, Department of Biological Sciences, 614 Rieveschl Hall, Cincinnati, Ohio 45221, USA.

³University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, Utah 84112, USA.

⁴Oklahoma State University, Department of Botany, 106 Life Sciences East, Stillwater, Oklahoma 74078–3013, USA.

⁵Miami University, Department of Botany, 316 Pearson Hall, Oxford, Ohio 45056, USA.

Abstract

Robinsonia is a genus of eight species and is endemic to the Juan Fernández Islands. Previous studies based on ITS phylogenies place *Robinsonia* deeply nested within *Senecio*, however its monophyly remains uncertain. In this paper, we use phylogenies reconstructed from plastid, ITS-ETS, and combined data to test its monophyly. Plastid phylogenies support *Robinsonia* as monophyletic, whereas ITS-ETS trees suggest that *Robinsonia berteroi* may be more closely related to a South American clade of *Senecio* species rather than to the remaining *Robinsonia* species. Maximum parsimony and Bayesian inference analyses of the combined data are congruent with the plastid trees, whereas maximum likelihood analyses are congruent with the ITS-ETS data. Nodal support for either hypothesis is generally low, and Shimodaira-Hasegawa tests in which *Robinsonia* was either constrained to be monophyletic or to be non-monophyletic showed that these trees do not have significantly lower likelihood scores than trees from unconstrained analyses. Thus the monophyly of *Robinsonia* remains inconclusive despite additional data and analyses. The results of the present paper further corroborate the results of previous studies that *Robinsonia* is deeply nested within *Senecio*. We therefore propose to reduce *Robinsonia* to synonymy and present new names and combinations of the *Robinsonia* species under *Senecio*.

Key words: ITS, ETS, plastid, Juan Fernández Islands, incongruence, Compositae, new combinations, taxonomy

Introduction

The Juan Fernández archipelago is composed of three small islands in the Pacific Ocean west of South America, approximately 667 km from mainland Chile (Bernardello *et al.* 2006). These islands harbor a small, but unique, flora with many endemic species. Although *Robinsonia* De Candolle in Guillemin (1833: 333, Senecioneae: Asteraceae) is comprised of only eight species, it is the second largest genus of flowering plants endemic to these islands. In previous phylogenetic studies focused on the delimitation of the genus *Senecio* Linnaeus (1753: 866, Pelser *et al.* 2007, Nordenstam *et al.* 2009) and the intergeneric relationships within the Senecioneae (Pelser *et al.* 2010), *Robinsonia* and four additional small genera were found to be deeply nested within *Senecio*. This finding was unexpected because *Robinsonia* is morphologically distinct from *Senecio*. All species of *Senecio sensu stricto* are monoecious herbs or small shrubs and, in contrast, *Robinsonia* species are dioecious trees or rosette shrubs. However, it is common for plant species on islands to experience strong selection pressures and become woody (Carlquist 1974, Sanders *et al.* 1987, Kim *et al.* 1996, Swenson & Manns 2003) and dioecious (Carlquist 1974, Bernardello *et al.* 2001), confounding the interpretation of evolutionary relationships using morphology alone (Kim *et al.* 1996).

In addition to being nested deeply within *Senecio*, the monophyly of *Robinsonia* remains unresolved. In an ITS phylogeny (Pelser *et al.* 2007), five of six sampled species of *Robinsonia* formed a well-supported