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Abstract

Anthropogenic carbon dioxide (CO2) emissions are causing ocean acidification and ocean warming; however, the synergistic 
effects of these stressors on giant clams are completely unknown. Juveniles of the fluted giant clam, Tridacna squamosa 
Lamarck, 1819, were exposed to present-day control seawater (416 µatm pCO2) and seawater treated with CO2 to simulate 
ocean conditions predicted for the next 50–100 years (622 µatm pCO2 and 1019 µatm pCO2). These CO2 treatments were cross-
factored with seawater temperatures of ~28.5 °C, ~30.0 °C and ~31.5 °C. The majority of mortality occurred between 40 and 
60 days. Survival of juveniles decreased with increasing pCO2 and decreased with increasing seawater temperature. The com-
bination of the highest pCO2 and both the moderate and highest seawater temperatures resulted in the lowest survival of <20 % 
indicating survival of T. squamosa could be reduced considerably at ocean conditions predicted to occur around the end of this 
century.
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Introduction

Anthropogenic emissions are increasing the concentration of 
carbon dioxide (CO2) in the atmosphere resulting in global 
climate change. The oceans have absorbed c. 40 % of 
anthropogenic CO2 emissions (Zeebe et al. 2008) and this 
has resulted in a 0.1 unit drop in the pH of the surface oceans 
(Caldeira and Wickett 2003); equivalent to a 30 % increase 
in acidity (Blackford and Gilbert 2007). This process, termed 
ocean acidification, has been shown to reduce survival 
(Watson et al. 2009), growth (Talmage and Gobler 2010) and 
metabolic rate (Michaelidis et al. 2005) of marine molluscs. 
The additive stressors of ocean acidification and global 
climate change are expected to be particularly problematic 
for marine life. Acidification and elevated temperatures have 
been shown to reduce fertilisation and development (Parker 
et al. 2009), and growth and survival (Talmage and Gobler 
2011) in marine molluscs. Tropical Pacific aquaculture 
species, including giant clams, are considered vulnerable to 
climate change; however, little is known about the effects of 
global change stressors on many of these species (Pickering 
et al. 2011). The effects of ocean acidification and global 
warming on giant clams have never been tested and this 
knowledge gap limits the capacity to mitigate the impacts of 
global change on these species.

Giant clams (Cardiidae, Tridacninae) are the largest 
living bivalves (Rosewater 1965) and throughout life 
arguably have the largest exoskeleton to calcify of all marine 
animals. Icons of the coral reef, giant clams have suffered 
from harvesting for food, shell collecting and the marine 
ornamental trade. Consequently, four tridacnines (Tridacna 
derasa (Röding, 1798), T. gigas (Linnaeus, 1758), T. 
rosewateri Sirenho & Scarlato, 1991 and T. tevoroa Lucas, 
Ledua & Braley, 1990) are listed as vulnerable on the IUCN 

Red List of Threatened Species (Wells, 1996). This short 
study was designed to measure the potentially synergistic 
effects of increased temperature and carbon dioxide on the 
survival of juveniles of the fluted giant clam, Tridacna 
squamosa Lamarck, 1819.

Materials and methods

This study was conducted at James Cook University’s 
Marine and Aquaculture Research Facility Unit. All methods 
and seawater parameters follow Miller et al. (2012). Briefly, 
for the elevated-CO2 treatments, seawater was treated in 
3000 l sumps with 100 % CO2 using a pH computer 
(Aquamedic AT-Control, Germany). Seawater was heated 
with in-line heaters before delivery to individual aquaria.

Juveniles of the fluted giant clam, Tridacna squamosa, 
were spawned from wild caught parents (3 males and 1 
female) and reared at the Darwin Aquaculture Centre. 
Juveniles were 14 months old at the start of the experiment 
(mean anterior-posterior measurement 28.23 ± 0.37 mm and 
wet weight 1.73 ± 0.05 g (±1 s.e.)) and were randomly 
assigned to nine different seawater treatment conditions in a 
3x3 cross-factored CO2 by temperature experimental grid 

design to determine the synergistic effects of elevated CO2

and temperature on survival. Seawater treatments consisted 
of three different mean partial pressures of carbon dioxide 
(pCO2): (1) present-day control pCO2 416 ± 6 µatm; (2) 

moderate pCO2 622 ± 8 µatm; and (3) high pCO2 1019 ± 15 
µatm (±1 s.e.) consistent with predictions of CO2 in the 
atmosphere and ocean over the next 50–100 years (Meehl et 
al. 2007; Doney et al. 2009; Meinshausen et al. 2011). CO2

treatments were cross-factored with three seawater tem-
peratures: (1) T1 control ~28.5 °C; (2) T2 ~30.0 °C (+1.5 °C 
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above control); and (3) T3 ~31.5 °C (+3.0 °C above control) 
consistent with predictions of ocean warming for the tropical 
Pacific (Poloczanska et al. 2007; Ganachaud et al. 2011). 

Juvenile giant clams were kept in seven or eight 40 l 
replicate tanks for each treatment, with two to three 
individuals randomly assigned to each tank. A total of 16 
juveniles were used in each of the nine treatments. Tanks 
were situated under tri-phosphor T8 linear fluorescent lights 

on a 13L:11D photoperiod. Photosynthetically active 
radiation (PAR) was measured with a LI-COR LI-250A light 
meter and LI-COR LI-192SA Underwater Quantum Sensor 
meter; mean PAR was 65.1 ± 3.5 µmol photons/m2/second 
(±1 s.e.). Individuals were gradually adjusted to their 
treatment conditions via a drip feed that brought tanks to 
their required CO2 and temperature over a 6 hour period. 
Seawater parameters are shown in Table 1.

Results

Mortality varied over time during the experiment. From 0 to 
20 days, survival remained high across all treatments (Figure 
1). At day 40, survival in the control-CO2 was 93–100 % 

compared to 80–93 % in the elevated-CO2 treatments. The 
most rapid decline in survival occurred between day 40 and 
60. During these 20 days, 50–100 % of all mortality 
occurred. Survival declined with increasing pCO2 and 
temperature across all treatments with the exception of the 
combination of control pCO2 at T3, which had greater 
survival than control pCO2 at T2.

FIGURE 1. Survival of giant clam, Tridacna squamosa, juveniles 
when held under conditions of elevated CO2 and temperature for 20, 

40 and 60 days. Nominal temperatures of 28.5, 30.0 and 31.5 °C 

relate to the temperature treatments T1, T2 and T3, respectively.

After 60 days, survival in the control temperature and 
control pCO2 group remained at 100 %; however, survival 
was reduced by elevated temperature to 47 % and 57 % at T2 
and T3, respectively. At moderate- and high-pCO2 conditions 

of 622 µatm and 1019 µatm, survival was reduced to 75 % 
and 53 %, respectively, at T1. The lowest survival of 19 % 
was recorded in the high-CO2 treatment at T2 and T3.

Discussion

This study showed that increased ocean CO2 and temperature 
are likely to reduce the survival of Tridacna squamosa. After 
two months in experimental conditions, all individuals 
within the control pCO2 and temperature group survived, 
indicating that the causes of reduced survival were indicative 
of either elevated pCO2 or temperature, or a combination of 
both. Particularly low survival (<20 %) occurred in the 
highest pCO2 treatment at both the elevated temperatures of 
+1.5 °C and +3.0 °C. This indicates that juvenile T. 
squamosa may be particularly susceptible to the higher CO2

levels predicted for the end of the century, and possibly more 
susceptible to relevant CO2 increases than temperature 
increases.

Since more than 50 % of mortality occurred between 
days 40 and 60 across all treatments, a possible physiological 
tolerance threshold may be exceeded beyond 40 days in 
these elevated CO2 and temperature conditions. As yet, we 
do not know the physiological processes or mechanisms 
behind the reduced survival observed or the effects on 

TABLE 1. Seawater parameters for each of the nine treatment groups. Values reported are means (± 1 s.e.). Mean values across all pCO2

treatments were 416 ± 6 µatm, 622 ± 8 µatm and 1019 ± 15 µatm and across all temperature treatments were 28.5 ± 0.0 °C, 29.9 ± 0.0 °C and 
31.4 ± 0.0 °C.

Treatment Temperature 
(°C)

Number of 
replicate tanks

pHNBS Total alkalinity 
(μmol kg-1 SW)

Salinity pCO2  
(µatm)

Control pCO2 and T1 28.4 (±0.0) 8 8.15 (±0.01) 2045 (±13) 32.5 (±0.2) 407.9 (±9.4)

Control pCO2 and T2 29.8 (±0.0) 8 8.15 (±0.01) 2018 (±7) 32.5 (±0.2) 404.6 (±10.6)

Control pCO2 and T3 31.2 (±0.0) 8 8.13 (±0.01) 2026 (±7) 32.5 (±0.2) 435.7 (±10.8)

Moderate pCO2 and T1 28.5 (±0.0) 8 8.01 (±0.01) 2103 (±8) 33.0 (±0.1) 613.5 (±11.7)

Moderate pCO2 and T2 30.1 (±0.0) 7 8.00 (±0.01) 2102 (±8) 33.0 (±0.1) 636.1 (±13.1)

Moderate pCO2 and T3 31.5 (±0.0) 8 8.01 (±0.01) 2096 (±7) 33.0 (±0.1) 615.0 (±14.6)

High pCO2 and T1 28.5 (±0.0) 8 7.84 (±0.01) 2171 (±7) 33.1 (±0.1) 981.1 (±24.0)

High pCO2 and T2 29.9 (±0.0) 7 7.83 (±0.01) 2173 (±7) 33.1 (±0.1) 1014.1 (±26.5)

High pCO2 and T3 31.5 (±0.0) 8 7.82 (±0.01) 2172 (±7) 33.1 (±0.1) 1061.1 (±28.0)
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different life stages of T. squamosa or related species. 
Reductions in growth (Shirayama and Thornton 2005), 
fertilisation (Havenhand et al. 2008) and calcification 
(Langdon et al. 2003; Kleypas et al. 2006; Gazeau et al. 
2007) have all been demonstrated in calcareous marine 
invertebrates. Research by Toonen et al. (2012) suggests that 
T. squamosa has a lower growth rate when kept in conditions 
of 700 to 1400 µatm pCO2 and higher inorganic nutrients 
than compared to growth rates reported in the literature. 
Metabolic rate, photosynthesis and interactions with 
symbiotic zooxanthellae, shell growth, calcification and 
other physiological and ecological processes are likely to 
affect survival, growth and fitness in giant clams and these 
issues will be addressed in further studies in this laboratory. 

Within closely related species, over evolutionary time 
there is considerable capacity to adapt total shell size and 
shape to environments where the saturation state of seawater 
with respect to calcium carbonate polymorphs, such as 
calcite or aragonite, is lower and where calcification is thus 
expected to be more costly (Watson et al. 2012). This 
suggests that if we can slow the rate of change in our oceans, 
species may be able to adapt gradually to changing 
conditions. However, giant clams may live for several 
decades or longer (Lucas, 1988) so that giant clams born into 
present-day oceans could live long enough to experience 
ocean conditions late this century. Unlike animals with 
shorter generation times such as many coral reef fishes, 
which have some capacity for transgenerational acclimation 
to changing ocean pCO2 (Miller et al. 2012), giant clams, 
although highly fecund, have longer times to maturity than 
many coral reef fishes, and may have a reduced ability for 
acclimation and adaptation over the next 100 years. Thus 
effects of ocean acidification and climate change on T. 
squamosa and other giant clam species are a priority for 
further research and an important consideration in both the 
management of wild populations and hatchery rearing to 
help enhance the survival of giant clams in a changing ocean.
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