Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2017-09-14
Page range: 1–24
Abstract views: 133
PDF downloaded: 6

Phylogenetic relationships of Epidrepanus within the subtribe Drepanocerina  (Coleoptera: Scarabaeidae: Scarabaeinae: Oniticellini), with the description of two new species

University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, I-10123 Torino, Italy.
Manchester Metropolitan University, Division of Biology and Conservation Ecology, Chester St, Manchester M1 5GD, United Kingdom.
Treguen, F-56190 Muzillac, France
University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, I-10123 Torino, Italy.
University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, I-10123 Torino, Italy.
Coleoptera Kenya Malawi taxonomy systematics new species Afrotropical region

Abstract

Two new Drepanocerina (Coleoptera: Scarabaeidae: Scarabaeinae: Oniticellini) species were recently found among samples from Malawi and Kenya, and are here described as Epidrepanus nyika new species and Epidrepanus kenyensis new species. Previously, the Afrotropical genus Epidrepanus Roggero, Barbero & Palestrini, 2015 was known only for three species: Epidrepanus caelatus (Gerstaecker, 1871), E. pulvinarius (Balthasar, 1963), and E. schimperi (Janssens, 1953). Morphological features (head, pronotum, elytra, epipharynx, and hindwing) were analysed using geometric morphometrics, whose results confirmed that the two new species are closely related to the known Epidrepanus species. A combined phylogenetic approach with TNT software was used to evaluate the phylogenetic relationships within Drepanocerina, corroborating the taxonomic position of Epidrepanus as a well-differentiated taxon. The phylogenetic results were integrated with the distribution data, and then processed with dispersal-vicariance analysis using RASP (Reconstruct Ancestral State in Phylogenies), while the speciation mechanisms were highlighted using VIP (Vicariance Inference Program). Both biogeographical analyses confirmed that the central East Africa area was the ancestral area of Epidrepanus. The genus was then interested by two basal vicariant and subsequent multiple dispersal events, leading to the present-day distribution.

 

References

  1. Arias, J.S., Szumik, C.A. & Goloboff, P.A. (2011) Spatial analysis of vicariance: a method for using direct geographical information in historical biogeography. Cladistics, 27, 617–628.
    https://doi.org/10.1111/j.1096-0031.2011.00353.x

    Bai, M., McCullough, E., Song, K.-Q., Liu, W.-G. & Yang, X.-K. (2011) Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae). PLoS ONE, 6 (6), e21600.
    https://doi.org/10.1371/journal.pone.0021600

    Bai, M., Beutel, R.G., Song, K.-Q., Liu, W.-G., Malqin, H., Li, S., Hua, X.-Y. & Yang, X.-K. (2012) Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae). Arthropod Structure & Development, 41, 505–513.
    https://doi.org/10.1016/j.asd.2012.05.004

    Ballerio, A. (2016) A first phylogenetic appraisal of two allied genera of Afrotropical Ceratocanthinae: Melanophilharmostes and Pseudopterorthochaetes (Coleoptera: Hybosoridae). Fragmenta entomologica, 48, 33–52.
    https://doi.org/10.4081/fe.2016.159

    Barbero, E., Palestrini, C. & Roggero, A. (2003) Revision of the genus Phalops Erichson, 1848 (Coleoptera: Scarabaeidae: Onthophagini). Museo Regionale di Scienze Naturali Torino, Torino, 378 pp.

    Breeschoten, T., Doorenweerd, C., Tarasov, S. & Vogler A.P. (2016) Phylogenetics and biogeography of the dung beetle genus Onthophagus inferred from mitochondrial genomes. Molecular Phylogenetics and Evolution, 105, 86–95.
    https://doi.org/10.1016/j.ympev.2016.08.016

    Browne, D.J. & Scholtz, C. (1994) The morphology and terminology of the hindwing articulation and wing base of the Coleoptera, with specific reference to the Scarabaeoidea. Systematic Entomology, 19, 133–143.
    https://doi.org/10.1111/j.1365-3113.1994.tb00583.x

    Browne, D.J. & Scholtz, C. (1995) Phylogeny of the families of Scarabaeoidea (Coleoptera) based on characters of the hindwing articulation, hindwing base and wing venation. Systematic Entomology, 20, 145–173.
    https://doi.org/10.1111/j.1365-3113.1995.tb00089.x

    Browne, D.J. & Scholtz, C. (1998) Evolution of the scarab hindwing articulation and wing base: a contribution toward the phylogeny of the Scarabaeidae (Scarabaeoidea: Coleoptera). Systematic Entomology, 23, 307–326.
    https://doi.org/10.1046/j.1365-3113.1998.00059.x

    Clouse, R.M., de Bivort, B.L. & Giribet, G. (2010) Phylogenetic signal in morphometric data. Cladistics, 27, 1–4.

    de Bivort, B.L., Clouse, R.M. & Giribet, G. (2010) A morphometrics-based phylogeny of the temperate Gondwanan mite harvestmen (Opiliones, Cyphophthalmi, Pettalidae). Journal of Zoological Systematics and Evolutionary Research, 48, 294–309.
    https://doi.org/10.1111/j.1439-0469.2009.00562.x

    de Bivort, B.L., Clouse, R.M. & Giribet, G. (2012) A cladistic reconstruction of the ancestral mite harvestman (Arachnida, Opiliones, Cyphophthalmi): portrait of a Paleozoic detritivore. Cladistics, 28, 582–597.
    https://doi.org/10.1111/j.1096-0031.2012.00407.x

    Ferretti, N., González, A. & Pérez-Miles, F. (2012) Historical biogeography of the genus Cyriocosmus (Araneae: Theraphosidae) in the Neotropics according to an event-based method and spatial analysis of vicariance. Zoological Studies, 51, 526–535.

    Gold, M.E.L., Brochu, C.A. & Norell, M.A. (2014) An expanded combined evidence approach to the Gavialis problem using geometric morphometric data from crocodylian braincases and Eustachian systems. PLoS ONE, 9, e105793.
    https://doi.org/10.1371/journal.pone.0105793

    Goloboff, P.A. & Catalano, S.A. (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32, 221–238.
    https://doi.org/10.1111/cla.12160

    Goloboff, P.A., Mattoni, C.I. & Quinteros, A.S. (2006) Continuous characters analyzed as such. Cladistics, 22, 589–601.
    https://doi.org/10.1111/j.1096-0031.2006.00122.x

    Haas, F. & Beutel, R.G. (2001) Wing folding and the functional morphology of the wing base in Coleoptera. Zoology, 104, 123–141.
    https://doi.org/10.1078/0944-2006-00017

    Krikken, J. (2009) Drepanocerine dung beetles: a group overview, with description of new taxa (Coleoptera: Scarabaeidae: Scarabaeinae). Haroldius, 4, 3–30.

    Kukalová-Peck, J. & Lawrence, F. (1993) Evolution of the hind wing in Coleoptera. Canadian Entomologist, 125, 181–258.
    https://doi.org/10.4039/Ent125181-2

    Kukalová-Peck, J. & Lawrence, F. (2004) Relationships among coleopteran suborders and major endoneopteran lineages: evidence from hind wing characters. European Journal of Entomology, 101, 95–144.
    https://doi.org/10.14411/eje.2004.018

    Perrard, A., Lopez-Osorio, F. & Carpenter, J.M. (2016) Phylogeny, landmark analysis and the use of wing venation to study the evolution of social wasps (Hymenoptera: Vespidae: Vespinae). Cladistics, 32, 406–425.
    https://doi.org/10.1111/cla.12138

    Philips, T.K. (2016) Phylogeny of the Oniticellini and Onthophagini dung beetles (Scarabaeidae, Scarabaeinae) from morphological evidence. ZooKeys, 579, 9–57.
    https://doi.org/10.3897/zookeys.579.6183

    Pizzo, A., Macagno, A.L.M., Roggero, A., Rolando, A. & Palestrini, C. (2009) Epipharynx shape as a tool to reveal differentiation patterns between insect sister species: insights from Onthophagus taurus and O. illyricus (Coleoptera, Scarabaeidae). Organisms Diversity and Evolution, 9, 189–200.
    https://doi.org/10.1016/j.ode.2009.01.003

    QGIS Development Team (2016) QGIS v2.18. Geographic information system user guide. Open source geospatial foundation project. Available from: http://docs.qgis.org/2.14/en/docs/user_manual (accessed 16 December 2016).

    Rambaut, A. (2014) FigTree v1.4.3. Free software. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 16 December 2016)

    Roggero, A., Barbero, E. & Palestrini, C. (2015) Phylogenetic and biogeographical review of the Drepanocerina (Coleoptera: Scarabaeidae: Oniticellini). Arthropod Systematics and Phylogeny, 73, 153–174.

    Roggero, A., Barbero, E. & Palestrini, C. (2017a) Revised classification and phylogeny of an Afrotropical species group based on molecular and morphological data, with the description of a new genus (Coleoptera: Scarabaeidae: Onthophagini). Organisms Diversity & Evolution, 17, 181–198.
    https://doi.org/10.1007/s13127-016-0297-z

    Roggero, A., Dierkens, M., Barbero, E. & Palestrini, C. (2017b) Combined phylogenetic analysis of two new Afrotropical genera of Onthophagini (Coleoptera, Scarabaeidae). Zoological Journal of the Linnean Society, 180, 298–320.

    Rohlf, F.J. (2016a) tpsDig v2.28. Free software. Available from: http://life.bio.sunysb.edu/morph (accessed 16 December 2016)

    Rohlf, F.J. (2016b) tpsUtil v1.69. Free software. Available from: http://life.bio.sunysb.edu/morph (accessed 16 December 2016)

    Rohlf, F.J. (2016c) tpsSmall v1.33. Free software. Available from: http://life.bio.sunysb.edu/morph (accessed 16 December 2016)

    Rohlf, F.J. (2016d) tpsRelw v1.65. Free software. Available from: http://life.bio.sunysb.edu/morph (accessed 16 December 2016)

    Rossa, R., Goczal, J. & Tofilski, A. (2016) Within and between-species variation of wing venation in genus Monochamus (Coleoptera: Cerambycidae). Journal of Insect Science, 16, 1–7.
    https://doi.org/10.1093/jisesa/iev153

    Sanmartin, I. & Martin-Piera, F. (2003) First phylogenetic analysis of the subfamily Pachydeminae (Coleoptera, Scarabaeoidea, Melolonthidae): the Palearctic Pachydeminae. Journal of Zoological Systematics and Evolutionary Research, 41, 2–46.
    https://doi.org/10.1046/j.1439-0469.2003.00179.x

    Sharkey, M.J., Carpenter, J.M., Vilhelmsen, L., Heraty, J., Liljeblad, J., Dowling, A.P.G., Schulmeister, S., Murray, D., Deans, A.R., Ronquist, F., Krogmann, L. & Wheeler, W.C. (2012) Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics, 28, 80–112.
    https://doi.org/10.1111/j.1096-0031.2011.00366.x

    Simmons, L.W. & Garcia-Gonzales, F. (2011) Experimental coevolution of male and female genital morphology. Nature Communications, 2, 374.
    https://doi.org/10.1038/ncomms1379

    Smith, U.E. & Hendricks, J.R. (2013) Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells. Systematic Biology, 62, 366–385.
    https://doi.org/10.1093/sysbio/syt002

    Tarasov, S.I. & Génier, F. (2015) Innovative bayesian and parsimony phylogeny of dung beetles (Coleoptera, Scarabaeidae, Scarabaeinae) enhanced by ontology-based partitioning of morphological characters. PLoS ONE, 10, e0116671.
    https://doi.org/10.1371/journal.pone.0116671

    Tarasov, S.I. & Solodovnikov, A.Y. (2011) Phylogenetic analyses reveal reliable morphological markers to classify mega-diversity in Onthophagini dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Cladistics, 27, 1–39.
    https://doi.org/10.1111/j.1096-0031.2011.00351.x

    Tocco, C., Roggero A., Rolando, A. & Palestrini, C. (2011) Inter-specific shape divergence in Aphodiini dung beetles: the case of Amidorus obscurus and A. immaturus. Organisms Diversity and Evolution, 11, 263–273.
    https://doi.org/10.1007/s13127-011-0055-1

    Yu, Y., Harris, A.J. & He, X. (2010a) A rough guide to S-DIVA v3.2. Free software. Available from: http://mnh.scu.edu.cn/S-DIVA/blog/SDIVA/index.html (accessed on 16 December 2016)

    Yu, Y., Harris, A.J. & He, X. (2010b) S-DIVA (statistical dispersal-vicariance analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution, 56, 848–850.
    https://doi.org/10.1016/j.ympev.2010.04.011