Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2017-06-16
Page range: 228–236
Abstract views: 113
PDF downloaded: 3

DNA barcode for identification of immature stages of sand flies (Diptera: Psychodidae) collected from natural breeding sites

Program for Study and Control of Tropical Diseases (PECET), Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
Biomedical Research Group, Universidad de Sucre, Sincelejo, Colombia
Biomedical Research Group, Universidad de Sucre, Sincelejo, Colombia
Biomedical Research Group, Universidad de Sucre, Sincelejo, Colombia
Biomedical Research Group, Universidad de Sucre, Sincelejo, Colombia
Biomedical Research Group, Universidad de Sucre, Sincelejo, Colombia
Program for Study and Control of Tropical Diseases (PECET), Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
Research Group on Molecular Systematics, Faculty of Science, National University of Colombia (Medellin branch), Medellín, Colombia
Program for Study and Control of Tropical Diseases (PECET), Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
Diptera Brumptomyia Lutzomyia Colombia Cytochrome Oxidasel I mitochondrial DNA

Abstract

Although phlebotomine sand flies breeding sites have been identified and recorded by several studies, the microhabitats exploited by these insects remain little-known and hard to find. In this context, the difficulty of finding immature stages, and the limited number of taxonomic studies to identify immature stages of phlebotomine sand flies, are considered the major obstacles when attempting a complete inventory of Lutzomyia species. The objective of this study is to validate Cytochrome Oxidase I (Barcode region) as a marker for the identification of immature stages of Lutzomyia species recovered from natural breeding sites in Colombia. Among 142 collected sand flies, 18 immature individuals that did not complete their life cycle were identified to species level through sequencing of the COI gene. Values of K2P genetic distance between 0.002–0.031 allowed the identification of larvae at species level. The bootstrap support values (96%) in the Neighbor-Joining dendrogram were consistent for the majority of the established MOTUS of Lutzomyia atroclavata, Lutzomyia micropyga, Lutzomyia serrana, Lutzomyia cayennensis, Lutzomyia rangeliana, Lutzomyia shannoni and some species of the genus Brumptomyia. The COI gene is validated as a marker for the identification of immature stages of the genus Lutzomyia.

 

 

References

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.
    https://doi.org/10.1093/nar/25.17.3389

    Arrivillaga, J.C., Navarro, J.C. & Feliciangeli, D. (1999) Morfología y quetotaxia del tagma cefálico larval de Lutzomyia França, 1924 (Diptera: Psychodidae): Proposición de un sistema de nomenclatura. Boletín de Entomología Venezolana, 14, 1–13.

    Azpurua, J., De La Cruz, D., Valderrama, A. & Windsor, D. (2010) Lutzomyia sand fly diversity and rates of infection by Wolbachia and an exotic Leishmania species on Barro Colorado Island, Panamá. Plos Neglected Tropical Diseases, 4, e627.
    https://doi.org/10.1371/journal.pntd.0000627

    Bates, P.A., Depaquit, J., Galati, E.A., Kamhawi, S., Maroli, M., McDowell, M.A., Picado, A., Ready, P.D., Salomón, O.D., Shaw, J.J., Traub-Cseko, Y. & Warburg, A. (2015) Recent advances in phlebotomine sand fly research related to leishmaniasis control. Parasites & Vectors, 8, 131.
    https://doi.org/10.1186/s13071-015-0712-x

    Blouin, M.S., Yowell, C.A., Courtney, C.H. & Dame, J. (1998) Substitution bias, rapid saturation, and use of mtDNA for nematode systematics. Molecular Biology and Evolution, 15, 1719–1727.
    https://doi.org/10.1093/oxfordjournals.molbev.a025898

    Boom, R., Sol, C.J., Salimans, M.M., Jansen, C.L., Wertheim, P.M. & Noordaa, V.J. (1990) Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology, 28, 495–503.

    Cohnstaedt, L.W., Beati, L., Cáceres, A.G., Ferro, C. & Munstermann, L.E. (2011) Phylogenetics of the phlebotomine sand fly group verru-carum (Diptera: Psychodidae: Lutzomyia). The American Journal of Tropical Medicine and Hygiene, 84, 913–922.
    https://doi.org/10.4269/ajtmh.2011.11-0040

    Contreras, M.A., Vivero, R.J. & Uribe, S.I. (2013) DNA barcode: una herramienta para la identificación de Lutzomyia spp. a partir de larvas. Boletín Del Museo Entomológico Francisco Luís Gallego, 5, 7–16.

    Contreras, M.A, Vivero, R.J., Vélez, I.D., Porter, C. & Uribe, S.I. (2014) DNA Barcoding for the identification of sand fly species (Diptera, Psychodidae, Phlebotominae) in Colombia. PLoS ONE, 9, e85496.
    https://doi.org/10.1371/journal.pone.0085496

    Depaquit, J. (2014) Molecular systematics applied to phlebotomine sandflies: review and perspectives. Infection, Genetics and Evolution, 28, 744–56.
    https://doi.org/10.1016/j.meegid.2014.10.027

    Dvorak, V., Halada, P., Hlavackova, K., Dokianakis, E., Antoniou, M. & Volf, P. (2014) Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasites &Vectors, 7, 21.
    https://doi.org/10.1186/1756-3305-7-21

    Endris, R.G., Young, D.G. & Perkins, P.V. (1987) Ultrastructural comparison of egg surface morphology of five Lutzomyia species (Diptera: Psychodidae). Journal of Medical Entomology, 24, 412–415.
    https://doi.org/10.1093/jmedent/24.4.412

    Fausto, A.M, Feliciangeli, M.D, Maroli, M. & Mazzini, M. (1998) Ootaxonomic investigation of five Lutzomyia species (Diptera, Psychodidae) from Venezuela. Memórias do Instituto Oswaldo Cruz, 96, 197–204.

    Feliciangeli, M.D., Castejón, O.C. & Limongi, J. (1993) Egg surface ultrastructure of eight New World phlebotomine sand fly species (Diptera: Psychodidae). Journal of Medical Entomology, 30, 651–656.
    https://doi.org/10.1093/jmedent/30.4.651

    Feliciangeli, M.D. (2004) Natural breeding places of phlebotomine sandflies. Medical and Veterinary Entomology, 18, 71–80.
    https://doi.org/10.1111/j.0269-283X.2004.0487.x

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular marine biology and biotechnology, 3, 294–299.

    Hanson, W.J. (1968) The breeding places of Phlebotomus in Panamá (Diptera: Psychodidae). Annals of the Entomological Society of America, 54, 317–322.

    https://doi.org/10.1093/aesa/54.3.317

    Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleics Acids Symposium Series, 41, 95–98.
    https://doi.org/10.1021/bk-1999-0734.ch008

    Hebert, P.D., Cywinska, A., Ball, S.L. & Dewaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, 270, 313–321.

    ttps://doi.org/10.1098/rspb.2002.2218

    Higgins, D.G., Bleasby, A.J. & Fuchs, R. (1992) CLUSTAL V: improved software for multiple sequence alignment. Computer Applications in the Biosciences, 8, 189–191.
    https://doi.org/10.1093/bioinformatics/8.2.189

    Kato, H., Cáceres, A.G., Gómez, E.A., Mimori, T., Uezato, H. & Hashiguchi, Y. (2015) Genetic divergence in populations of Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis, in Ecuador and Peru. Acta Tropica, 141, 79–87.
    https://doi.org/10.1016/j.actatropica.2014.10.004

    Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.
    https://doi.org/10.1007/BF01731581

    Lanteri, A. (2007) Código de barras del ADN y sus posibles aplicaciones en el campo de la Entomología. Revista Sociedad Entomologica Argentina, 66, 15–25.

    Miller, L.J., Graham, Allsopp, P.G. & Yeates, D.K. (1999) Identification of morphologically similar canegrubs (Coleoptera: Scarabaeidae: Melolonthini) using a molecular diagnostic technique. Australian Journal of Entomology, 38, 189–196, https://doi.org/10.1046/j.1440-6055.1999.00110.x

    Miller, K.B., Alarie, Y., Wolfe, W.G. & Whiting, M.F. (2005) Association of insect life stages using DNA sequences: the larvae of Philodytes umbrinus (Motschulsky) (Coleoptera: Dytiscidae). Systematic Entomology, 30, 499–509.
    https://doi.org/10.1111/j.1365-3113.2005.00320.x

    Nzelu, C.O, Cáceres, A.G., Arrunátegui-Jiménez, M.J., Lañas-Rosas, M.F., Yañez-Trujillano, H.H., Luna, D.V., Holguín C.E., Katakura, K., Hashiguchi, Y. & Kato, H. (2015) DNA barcoding for identification of sand fly species (Diptera: Psychodidae) from leishmaniasis-endemic areas of Peru. Acta Tropica, 145, 45–51.
    https://doi.org/10.1016/j.actatropica.2015.02.003

    Paquin, P. & Hedin, M. (2004) The power and perils of ‘molecular taxonomy: a case study of eyeless and endangered Cicurina (Araneae: Dictynidae) from Texas caves. Molecular Ecology, 13, 3239–3255.
    https://doi.org/10.1111/j.1365-294X.2004.02296.x

    Pérez, J. & Ogusuku, E. (1997) Chorion patterns on eggs of Lutzomyia sandflies from the Peruvian Andes. Medical and Veterinary Entomology, 11, 127–33.

    https://doi.org/10.1111/j.1365-2915.1997.tb00301.x

    Pinto, I.S., Chagas, B.D., Fuzari, A.A., Ferreira, A.L., Rezende, H.R., Bruno, R.V., Falqueto, A., Andrade-Filho, J.D., Galati, E.A., Fernandes, P.H., Brazil, R.P. & Peixoto, A.A. (2015) DNA Barcoding of Neotropical Sand Flies (Diptera, Psychodidae, Phlebotominae): Species Identification and Discovery within Brazil. PLoS ONE, 10 (10), e0140636.
    https://doi.org/10.1371/journal.pone.0140636

    Romero, R., Lastre, L., Pérez-Doria, A. & Bejarano, E. (2016) DNA barcoding to identify species of phlebotomine sand fly (Diptera: Psychodidae) in the mixed leishmaniasis focus of the Colombian Caribbean. Acta Tropica, 159, pp. 125–131.
    https://doi.org/10.1016/j.actatropica.2016.03.017

    Saitou, N. & Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    Sierra, A.D., Vélez, I.D. & Uribe, S.I (2000) Identificación de Lutzomyia spp. (Diptera: Psychodidae) grupo verrucarum por medio de microscopia electrónica de sus huevos. Revista de Biología Tropical, 48, 615–622.

    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA 5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731–2739.
    https://doi.org/10.1093/molbev/msr121

    Vivero, R.J., Bejarano, E.E. & Contreras, M.A. (2007) Análisis de la estructura primaria y secundaria del ARN de transferencia mitocondrial para Serina en siete especies de Lutzomyia. Biomédica, 27, 429–438.
    https://doi.org/10.7705/biomedica.v27i3.205

    Vivero, R.J, Ortega-Gómez, E., Aparicio, Y., Torres-Gutierez, C., Muskus, C. & Bejarano, E.E. (2013) Adult and immature Phlebotomine sandflies (Diptera: Psychodidae): records for the Caribbean region of Colombia. Boletín de Malariología y Salud Ambiental, 3, 1–10.

    Vivero, R.J., Torres-Gutierrez, C., Bejarano, E.E., Cadena-Peña, H., Estrada, L.G., Flórez, F., Ortega, E., Aparicio, Y. & Muskus, C. (2015) Study on natural breeding sites of sand flies (Diptera: Phlebotominae) in areas of Leishmania transmission in Colombia. Parasites and Vectors, 8, 116.
    https://doi.org/10.1186/s13071-015-0711-y

    Ward, D. (1976) A revised numerical chaetotaxy for neotropical Phlebotomine sandfly larvae (Diptera: Psychodidae). Systematic Entomology, 1, 89–94.

    https://doi.org/10.1111/j.1365-3113.1976.tb00035.x