Review of the Japanese Microtendipes (Diptera: Chironomidae: Chironominae), with description of a new species

HONGQU TANG ${ }^{1} \&$ HIROMI NIITSUMA ${ }^{2,3}$
${ }^{1}$ Institute of Groundwater and Earth Science, Jinan University, Guangzhou 510632, P. R. China. E-mail: townningt@gmail.com ${ }^{2}$ Department of Biology, Faculty of Education, Shizuoka University, 836 Ôya, Suruga-ku, Shizuoka, 422-8529 Japan. E-mail: edhniit@ipc.shizuoka.ac.jp
${ }^{3}$ Corresponding author: E-mail: edhniit@ipc.shizuoka.ac.jp

Abstract

Japanese species of Microtendipes are reviewed. Eleven names proposed in this genus, including Russian M. sakhalinensis Zorina, 2001, are synonymized with M. umbrosus Freeman, 1955, for which male and female adults, pupa and larva are redescribed based on specimens collected from Japan. Two species, M. shoukomaki Sasa, 1989 and M. famiefeus Sasa, 1996, are validated based on the re-examination of type specimens and are redescribed based on specimens newly collected from Japan. Descriptions of the larva of M. shoukomaki and the female adult, pupa and larva of M. famiefeus are given here for the first time. Microtendipes chloris (Meigen, 1818) sensu Sasa is redescribed as a new species, M. parachloris Niitsuma \& Tang sp. nov., based on the male adult. Additionally, synonymic notes of Polypedilum (Cerobregma) yamasinense (Tokunaga, 1940) comb. nov. and P. (Polypedilum) tsukubaense (Sasa, 1979), transferred from Microtendipes, are given. Polypedilum kamotertium Sasa, 1989 and M. iriocedeus Sasa \& Suzuki, 2000 are synonymized with the above two species, respectively, based on each original description.

The distribution of M. umbrosus extends from Africa to the Russian Far East and East Asia (Japan, China), and Australia and Thailand (with new distributions reported here). Although no African type material is examined here, the morphological features of those populations are consistent with Freeman's concept.

Key words: Chironomidae, Microtendipes, taxonomy, new species, synonym, Japan

Introduction

The genus Microtendipes Kieffer has a nearly worldwide distribution, and hitherto comprises more than 60 described species from around the world (Freeman \& Cranston 1980, Cranston \& Martin 1989, Ashe \& Cranston 1990, Oliver et al. 1990, Zorina 2001, Qi \& Wang 2006, Qi et al. 2014, Yamamoto \& Yamamoto 2014, Hazra et al. 2016). In Japan, 19 species of Microtendipes were listed in the most recent catalogue (Yamamoto \& Yamamoto 2014).

However, most were described by Sasa and his co-workers. Kobayashi \& Endo (2008) wrote, "it is well known among chironomid researchers that many of the species described by Sasa probably are junior synonyms of other species."

Therefore, we re-examined the type and voucher specimens of all species of Microtendipes deposited in the Sasa collection of the National Museum of Nature and Science, Tsukuba, Japan (NSMT). We conclude that the following ten species, M. tamaogouti Sasa, 1983, M. shounagasaki Sasa, 1989a, M. kamoprimus Sasa, 1989b, M. amamihosoides Sasa, 1990, M. hibaraquintus Sasa, 1993, M. tokarafegeus Sasa \& Suzuki, 1995, M. simantofegeus Sasa, Suzuki \& Sakai, 1998, M. simantogeheus Sasa, Suzuki \& Sakai, 1998, M. tusimabeceus Sasa \& Suzuki, 1999 and M. tusimacedeus Sasa \& Suzuki, 1999, are junior synonyms of M. umbrosus Freeman, 1955, and only two species, M. shoukomaki Sasa, 1989a and M. famiefeus Sasa, 1996, are considered to be valid species of Japanese Microtendipes. Judging from the original description, the Russian species M. sakhalinensis Zorina, 2001 also is a junior synonym of M. umbrosus. Here, the synonymic notes of M. umbrosus, M. shoukomaki and M. famiefeus are
based on comparisons between type specimens. These three species are redescribed based on specimens collected newly from Japan by the second author. Descriptions of the larva of M. shoukomaki and the female adult, pupa and larva of M. famiefeus are given for the first time. Distributions in China is compiled based on specimens collected by the first author, and elsewhere in Asia and Australia by P.S. Cranston (Canberra, Australia).

The species identified as M. chloris (Meigen, 1818) by Sasa (1984) and Sasa \& Kamimura (1987) is redescribed here as a new species, M. parachloris Niitsuma \& Tang sp. nov., based on the male specimens deposited in NSMT.

Of 19 species listed by Yamamoto \& Yamamoto (2014), two species, M. yamashinensis (Tokunaga, 1940) and M. iriocedeus Sasa \& Suzuki, 2000, are transferred to Polypedilum on the basis of the male morphology. Further, the latter is treated as a junior synonym of P. (Polypedilum) tsukubaense (Sasa, 1979).

Material and methods

Morphological nomenclature follows Sæther (1980) and Cranston (2013) except for pupal morphology, e.g. frontal warts, pedes spurii A and LS-setae, which are referred to as cephalic tubercles, vortex and Lt-setae, respectively, according to current usage (Langton \& Visser 2003). For the different life stage of examined material, the following abbreviations are used: M, male; F, female; P, pupa; L, larva; Pe, pupal exuviae; Le, larval exuviae; Le/ $\mathrm{Pe} / \mathrm{M}(\mathrm{F})$, reared adult male (female) with associated pupal and larval exuviae. The number of observations (n) is expressed at the beginning of the species description, except when otherwise indicated in parenthesis. Measurements and counts are given as ranges, followed by the means when three or more specimens are measured or counted.

The type material examined is deposited in the Sasa collection of NSMT, and the additional material is housed in the Shizuoka University Museum, Japan (SUM) and the Institute of Groundwater and Earth Sciences, Jinan University, China (EJNU).

Taxonomy

Microtendipes umbrosus Freeman

(Figures 1, 5A)

Microtendipes umbrosus Freeman, 1955:32; Freeman 1961: 720.
Microtendipes tamaogouti Sasa, 1983: 7. Syn. nov.
Microtendipes shounagasaki Sasa, 1989a: 30. Syn. nov.
Microtendipes kamoprimus Sasa, 1989b: 62. Syn. nov.
Microtendipes amamihosoides Sasa, 1990: 116. Syn. nov.
Microtendipes hibaraquintus Sasa, 1993: 75. Syn. nov.
Microtendipes tokarafegeus Sasa \& Suzuki, 1995: 263. Syn. nov.
Microtendipes simantofegeus Sasa, Suzuki \& Sakai, 1998: 53. Syn. nov.
Microtendipes simantogeheus Sasa, Suzuki \& Sakai, 1998: 54. Syn. nov.
Microtendipes tusimabeceus Sasa \& Suzuki, 1999: 4. Syn. nov.
Microtendipes tusimacedeus Sasa \& Suzuki, 1999: 5. Syn. nov.
Microtendipes sakhalinensis Zorina, 2001: 35. Syn. nov.

Material examined. Syntypes of Microtendipes tamaogouti, 10 M, 8 F (NSMT-I-Dip 5669-5680), labelled, "No. 67: 51-62", respectively, JAPAN: Tokyo, Okutama, Tama River, 12.vi.1981. Holotype of Microtendipes shounagasaki, M (NSMT-I-Dip 4639), labelled, "No. 152: 47", JAPAN: Toyama, Shou River, 25.viii. 1988. Holotype of Microtendipes kamoprimus, M (NSMT-I-Dip 4660), labelled, "No. 163: 1", JAPAN: Kyoto, Kamo River, 12.x.1988. Holotype of Microtendipes amamihosoides, M (NSMT-I-Dip 4686), labelled, "No. 178: 96", JAPAN: Kagoshima, Amami Island, Yakkachi River, $18 . i i i .1989$ (emerged 10.iv.1989). Holotype of Microtendipes hibaraquintus, M (NSMT-I-Dip 4843), labelled, "No. 223: 36", JAPAN: Fukushima, Kitashiobara, Lake Hibara, 6.viii.1991. Holotype of Microtendipes tokarafegeus, M (NSMT-I-Dip 5011), labelled, "No. 290: 15", JAPAN: Kagoshima, Nakanoshima Island, 20.v.1994. Holotype of Microtendipes simantofegeus, M (NSMT-I-Dip 5199),
labelled, "No. 358: 47", JAPAN: Kochi, Nakamura, Shimanto River, 26.iv.1998. Holotype of Microtendipes simantogeheus, M (NSMT-I-Dip 5202), labelled, "No. 358: 53", JAPAN: Kochi, Nakamura, Shimanto River, 26.iv.1998. Holotype of Microtendipes tusimabeceus, M (NSMT-I-Dip 5140), labelled, "No. 353: 69", JAPAN: Nagasaki, Tsushima Island, Uchiyama, Izuhara, 24.iii.1998; Holotype of Microtendipes tusimacedeus, M (NSMT-I-Dip 5139), labelled, "No. 353: 68", JAPAN: Nagasaki, Tsushima Island, Uchiyama, Izuhara, 24.iii.1998. Paratype of Microtendipes ginzanefeus, M (NSMT), labelled, "No. 403: 46", JAPAN: Hokkaido, Mt. Ginzan, 2.ix.2000. Non-types. Le/Pe/M (SUM), JAPAN: Fukushima, Hirono, Asami River, 15.viii. 2001 (emerged 30.viii.2001); M (SUM), Fukushima, Iwaki, Yaguki, 15.vii. 2012 (emerged 30.vii.2012); M, L (SUM), Tochigi, Ichikai, Miage, 1.ix. 1989 (emerged 10.ix.1989); Pe/M (SUM), Kanagawa, Kiyokawa, Miyagase, 23.ii. 1994 (emerged 27.iii.1994); Le/Pe/M (SUM), as previous except 26.v. 1996 (emerged 26.vi.1996); 2 M (SUM), Shizuoka, Sunto, Shimizu-cho, Kakita River, 3.iii.1985; 2 Le/Pe/F, 2 L (SUM), Shizuoka, Shimizu, Yanbara River, 3.iii. 1985 (emerged 10.v.1985); Pe/M (SUM), as previous except 3.iv. 1985 (emerged 8.iv.1985); 3 M , Le/Pe/M, 3 F, $3 \mathrm{Le} / \mathrm{F}, 13 \mathrm{Pe}, 4 \mathrm{Le}, 13 \mathrm{~L}$ (SUM), as previous except 16.vi.1985 (emerged 19-30.vi.1985); Pe/M (SUM), Shizuoka, Shimizu, Ihara River, 12.ix. 1988 (emerged 20.ix.1988); Pe/M (SUM), Shizuoka, Kujiragaike, 19.xi. 1987 (emerged 25.xi.1987); 2 L (SUM), Shizuoka, Kakegawa, Osuka-cho, 14.i.1989; 2 L (SUM), as previous except 27.i.1989; Pe/M, Pe/F (SUM), as previous except $11 . i i i .1989$ (emerged 16.iii.1989); $4 \mathrm{Le} / \mathrm{Pe} / \mathrm{M}$ (EJNU), CHINA: Guangdong, Guangzhou, Bage villa, $20 . i i i .2015$ (emerged 1.v.2015); 4 M (EJNU), as previous except 29.xi.2015; Pe/M (EJNU), Hainan, Wuzhi Mt., 3.xii.2011; 3 M, 4 Pe (EJNU), Yunnan, Honghe, Jinping County, Maandi Town, 8.vi.2017; 2 M, 4 Pe (EJNU), Yunnan, Pu'er, Ximeng County, 20.i.2015; 2 M (EJNU), Fujian, Mt. Wuyi, 9.viii.2014; Pe, M (EJNU), Zhejiang, Xiangshan County, 15.vi.2017.

Description. Male ($\mathrm{n}=15$). Total length 3.7-5.6, 4.6 mm .
Coloration. Thorax brown with 3 scutal vittae, anepisternum II, preepisternum and postnotum darkened. Abdomen green with dark segments VII-IX. Wing (Figure 1A) with faint cloud around RM and FCu or more extensively, occasionally on apical half. Foreleg yellow with dark markings; femur dark brown on middle and apex; tibia variable in extent of brown areas, darkened only on both ends or along its entire length; occasionally ta_{1} broadly darkened basally. Mid and hind legs yellow with darkened knees.

Head. Temporals 14-24, 20 (13), uniserial, partially biserial. Frontal tubercles absent. AR 1.7-2.1, 2.0. Clypeus trapezoid with $27-42$, 32 setae. Lengths of palpomeres $1-5(\mu \mathrm{~m}): 60-75,67$ (13); 55-70, 64 (13); 260325, 291 (13); 275-335, 298 (13); 330-460, 388 (13), respectively. $\mathrm{Pm}_{4} / \mathrm{Pm}_{3} 0.97-1.1,1.0$ (13); $\mathrm{Pm}_{5} / \mathrm{Pm}_{4} 1.1-1.4$, 1.3 (13). Pm_{3} apically with 4-6, 5 sensilla clavata, longest $18-23,20 \mu \mathrm{~m}$ long.

Thorax. Lateral antepronotals 3-8, 5; acrostichals 5-12, 8, concentrated at apex of scutum; dorsocentrals 1218,15 , uniserial, occasionally biserial anteriorly; prealars 3-8, 4, uniserial; scutellars 24-35, 28.

Wing. Length 2.5-3.6, 3.0 (11) mm. VR 1.1-1.2, 1.1 (11). Vein R_{2+3} ending close to apex of $R_{1} . R, R_{1}$ and R_{4+5} with $22-35,26$ (12); 18-28, 23 (12); 35-53, 42 (12) setae, respectively. Squama with 11-20, 15 setae.

Legs. Forefemur with 2 rows of proximally directed setae on outer side. Foretibia apically truncate, unarmed. Mid and hind tibiae each with 2 combs and 1 recurved spur. Mid ta_{1} with 5-10, 7 (13) sensilla chaetica, distalmost located $0.47-0.54,0.51$ (13) from base. Lengths and proportions of leg segments as in Table 1.

Hypopygium (Figure 1B). Anal tergite with anterior bands; median setae 1-5, 2, arising from pale pits on each end of tergal bands; anal point parallel-sided, with truncate apex. Superior volsella sickle-shaped, rounded apically, with one basal and 3-7, 5 dorsal setae; occasionally with sparse microtrichia basally. Median volsella poorly developed, consisting of small tubercles with $1-4,2$ setae, occasionally absent. Gonostylus $118-165,138(11) \mu \mathrm{m}$ long, $3.2-3.6,3.5$ (11) times as long as broad at middle, apically with short and stout setae.

Female ($\mathrm{n}=9$). Total length 2.5-4.2, 3.3 mm .
Coloration. Similar to male.
Head. Temporals 18-24, 21. Antenna with 5 flagellomeres; terminal flagellomere 160-200, 177 (8) $\mu \mathrm{m}$ long, shorter than preceding 2 flagellomeres together; AR $0.34-0.41,0.37$ (8). Clypeus with $32-45,40$ setae. Lengths of palpomeres $1-5(\mu \mathrm{~m})$: 50-75, 57; 60-70, 62; 280-310, 293; 290-340, 308; 350-460, 390, respectively. $\mathrm{Pm}_{4} / \mathrm{Pm}_{3}$ $1.0-1.1,1.0 ; \mathrm{Pm}_{5} / \mathrm{Pm}_{4} 1.2-1.4,1.3 . \mathrm{Pm}_{3}$ with 5-6, 5 sensilla clavata, longest $15-23,19 \mu \mathrm{~m}$ long.

Thorax. Lateral antepronotals 1-5, 3; acrostichals 6-12, 9; dorsocentrals 17-25, 21; prealars 3-6, 4; scutellars 25-37, 31.

Wing. Length 2.3-3.5, 2.7 mm . VR 1.2-1.3, 1.2 (8). Veins R, R_{1} and R_{4+5} with 22-37, 29; 23-41, 30; and 5589,71 setae, respectively. Squama with $11-22,15$ setae.

FIGURE 1. Microtendipes umbrosus Freeman, male (A, B), female (C), pupa (D-F) and larva (G-K). A, Wing; B, hypopygium, dorsal view; C, genitalia, ventral view; D, cephalic tubercles; E, abdomen, dorsal view; F, posterolateral corner of abdominal segment VIII, dorsal view; G, antenna; H, premandible; I, pecten epipharyngis; J, mandible; K, mentum.

TABLE 1. Lengths ($\mu \mathrm{m}$) and proportions of legs of Microtendipes umbrosus Freeman, male $(\mathrm{n}=12)$ and female $(\mathrm{n}=9)$

		fe	ti	ta_{1}	ta_{2}	ta_{3}	ta_{4}	ta_{5}	LR	BR
Male	P_{1}	$1167-1523$	$1167-1599$	$1548-2005$	$711-990$	$660-914$	$558-736$	$279-406$	$1.1-1.4$	$2.1-2.6$
		1322	1343	1753	825	753	632	311	1.3	2.4
	P_{2}	$1269-1700$	$1091-1523$	$711-990$	$355-533$	$279-406$	$178-254$	$102-152$	$0.62-0.67$	$3.5-4.2$
		1453	1267	831	431	324	209	123	0.66	3.9
	P_{3}	$1421-1878$	$1218-1650$	$939-1294$	$558-787$	$406-584$	$228-355$	$127-178$	$0.75-0.79$	$3.5-5.0$
		1626	1400	1081	652	484	290	142	0.77	4.5
Female	P_{1}	$1244-1523$	$1167-1472$	$1675-2030$	$787-964$	$711-888$	$584-736$	$279-330$	$1.3-1.4$	
		1376	1300	1839	854	792	669	305	1.4	
	P_{2}	$1269-1599$	$1142-1447$	$685-888$	$381-508$	$279-381$	$178-228$	$102-152$	$0.60-0.62$	
		1435	1300	789	427	319	206	121	0.61	
	P_{3}	$1421-1777$	$1244-1624$	$939-1218$	$584-736$	$431-558$	$254-330$	$127-152$	$0.74-0.79$	
		1616	1416	$1085(8)$	$650(8)$	$492(8)$	$282(8)$	$133(8)$	$0.76(8)$	

Legs. Mid ta_{1} with 16-26, 21 sensilla chaetica, distalmost located $0.52-0.60,0.55$ from base. Lengths and proportions of leg segments as in Table 1.

Genitalia (Figure 1C). Sternite VIII with 16-26, 20 (6) setae on each side. Gonocoxapodeme strong. Gonapophysis VIII broad, rounded caudally. Gonocoxite IX with 1-3, 2 (7) setae. Lateral plate of segment X triangular without setae. Postgenital plate triangular. Notum 150-165, 158 (4) $\mu \mathrm{m}$ long, $2.0-2.6,2.3$ (4) times as long as ramus. Labium with microtrichia. Seminal capsule oval, 65-75, $72 \mu \mathrm{~m}$ long, 1.1 times as long as broad, and 0.45-0.48, 0.46 (4) times as long as notum, with cylindrical neck.

Pupa ($\mathrm{n}=23$). Total length $4.7-6.7,5.4 \mathrm{~mm}$.
Coloration. Exuviae pale brown with somewhat infuscated thorax and abdomen.
Cephalothorax. Cephalic tubercles (Figure 1D) conical, 100-160, 127 (22) $\mu \mathrm{m}$ long, 1.3-1.5, 1.4 (22) times as long as basal width in mounted exuviae. Frontal setae absent. Dorsum of thorax strongly pebbled along median suture.

Abdomen (Figure 1E). Tergites I and VII without spinulation; II-V each with more or less extensive, triangular spinule patch; VI with posterior transverse spinule band, usually interrupted medially; VIII with central spinule patch and posterior transverse spinule band; IX with somewhat strong central spinule patch, and occasionally very weak anterolateral spinule patches. Tergites II-VI each with anterior transverse band of spines. Tergite II with row of 45-89, 62 (21) caudal hooklets; its row $0.40-0.51,0.45$ (21) times as long as tergal width. Conjunctives III/IV and IV/V each with spinule band. Segment IV with vortex. Segment V with 3 Lt-setae on each side; VI-VII each with 4 Lt-setae, occasionally VI with 3 Lt-setae; VIII with 5 Lt-setae. Anal comb (Figure 1F) on segment VIII with 2-4, 3 (21) teeth becoming smaller anteriorly. Anal lobe 275-400, 326 (21) $\mu \mathrm{m}$ long, 1.5-2.0, 1.7 (21) times as long as broad, with 47-77, 56 (22) lateral taeniae; with dorsal seta simple, located $0.19-0.29,0.24$ (20) from apex. Male genital sac $0.96-1.1,1.1$ (12) times as long as anal lobe.

Fourth instar larva ($\mathrm{n}=31$). Body length 7.2-10.6, 8.7 (7) mm.
Coloration. Head generally yellowish, with dark brown postoccipital margin, in alcoholic specimen.
Head. Length 434-545, 480 (12) $\mu \mathrm{m}$ long; cephalic index $0.72-0.76,0.73$ (11). Antenna (Figure 1G) 0.33$0.39,0.36$ (11) times as long as head capsule, with 6 segments. Lengths of first to sixth segments ($\mu \mathrm{m}$): 80-110,93 (19); 20-28, 23 (19); 23-33, 26 (19); 14-28, 20 (19); 10-18, 15 (19); 6-10, 8 (19). AR 0.9-1.0, 1.0 (19). First segment with ring organ located $0.24-0.31,0.28$ (19) from base; blade $105-155,121$ (10) $\mu \mathrm{m}$ long, extending far beyond apex of terminal segment; accessary blade very small, $8-10,9(4) \mu \mathrm{m}$ long. Each of second and third segments laterally with Lauterborn organ $18-25,23$ (18) $\mu \mathrm{m}$ long. Third segment laterally with style $8-13,10$ (17) $\mu \mathrm{m}$ long. Labral lamella with $11-18,15$ (23) teeth. Premandible (Figure 1H) 88-130, 102 (27) $\mu \mathrm{m}$ long, with 3 teeth. Pecten epipharyngis with 3 equal-sized teeth (Figure 1I). Mandible (Figure 1J) 155-215, 175 (19) $\mu \mathrm{m}$ long with seta subdentalis $40-65,50(16) \mu \mathrm{m}$ long, curved apically, reaching distalmost inner tooth; seta interna 4branched. Mentum (Figure 1K) 143-190, 157 (19) $\mu \mathrm{m}$ wide; median tooth bifid, pale, 30-45, 35 (19) $\mu \mathrm{m}$ wide,
with very small central tooth. Ventromental plate $70-100,82$ (18) $\mu \mathrm{m}$ long, $120-160$, 137 (18) $\mu \mathrm{m}$ wide, with $28-$ 35,30 (20) striae; distance between both plates $0.47-0.51,0.50$ (19) times as broad as width of mentum. Postmentum 175-233, 193 (28) $\mu \mathrm{m}$ long.

Body. With 8 anal setae.
Remarks. Microtendipes umbrosus Freeman is distributed in Africa and Australia (Freeman \& Cranston 1980, Cranston \& Martin 1989). In Australian populations, the pupa was drawn with three Lt-setae on abdominal segment VI (Cranston 2000) but across a series of specimens this number varies (3 or 4) including between one side and the other (P.S. Cranston, Canberra, Australia, pers. comm.). Of 23 Japanese specimens examined here, three specimens (13%) have three Lt-setae on one side of the segment VI and four Lt-setae on the other, 20 (87%) possessing four Lt-setae on each side of the segment. The features of the Japanese specimens are consistent with Freeman $(1955,1958,1961)$ for the males and females and with those of Australian pupal and larval exuviae associated with their adults (P.S. Cranston, Canberra, Australia, pers. comm.) for the pupae and larvae.

After re-examinations of the syntype males and females of M. tamaogouti Sasa and the holotype males of M. shounagasaki Sasa, M. kamoprimus Sasa, M. amamihosoides Sasa, M. hibaraquintus Sasa, M. tokarafegeus Sasa \& Suzuki, M. simantofegeus Sasa, Suzuki \& Sakai, M. simantogeheus Sasa, Suzuki \& Sakai, M. tusimabeceus Sasa \& Suzuki and M. tusimacedeus Sasa \& Suzuki, it was evident that all features of M. umbrosus are common to these taxa with little difference between them, and thus, we regard these as junior synonyms of M. umbrosus.

Judging from the original morphological description of the male, the Russian species M. sakhalinensis Zorina, 2001 also may be conspecific with M. umbrosus.

The male of M. umbrosus resembles that of Palaearctic M. pedellus (De Geer, 1776) in the coloration of thorax and legs, and also the general appearance of the hypopygium, but differs in the wing with a faint cloud (at least around the vein FCu) and the poorly developed median volsella, bearing $0-4$ setae on small tubercles. In M. pedellus, the male is characterized by the wing without any marking, and the median volsella with a bundle of setae on a well-developed tubercle (Langton \& Pinder 2007: 110, fig. 219 C).

Microtendipes umbrosus is most common in Japanese Microtendipes. However, not only wide variation in the leg and wing markings but also the inadequate justifications for differentiation made by Sasa and his co-workers have led to much confusion. In the description of M. tamaogouti, Sasa (1983: 7) wrote, "Dorsal appendage with a slightly expanded base bearing 2 or 3 long inner setae, and a finger-like process with rounded apex and bearing 4 setae in the middle on the dorsal surface." He failed to distinguish the setae of the median volsella from those of the superior volsella.

In describing M. tusimacedeus, Sasa \& Suzuki (1999: 5) wrote, "Dorsal appendage wide and sickle-shaped", and drew a curiously short superior volsella (p. 43, fig. 3g). Re-examination of the holotype proved that they overlooked the apical portion of the volsella folded by the mounting procedure (Figure 5A). Further, in the description of M. simantofegeus, Sasa et al. (1998:53) even miscalculated the value of male antennal ratio. The correct value is 1.6 , not 0.97 .

Microtendipes ginzanefeus Sasa \& Suzuki, 2001 was erected on the basis of two male specimens collected from Hokkaido, northern Japan. Re-examination of the type series showed that the original description is not based on the holotype, but on the paratype, which is a male of M. umbrosus.

Two species groups, the M. pedellus group and the M. rydalensis group, based on the pupal and larval morphology are recognized currently in this genus (Pinder \& Reiss 1983: 324 for the larva, 1986: 334 for the pupa). Microtendipes umbrosus belongs to the M. pedellus group, because the pupa has long transverse bands of anterior spines on the abdominal tergites II-VI, a central spinule patch on the anal tergite, and five Lt-setae on the abdominal segment VIII, and the larva possesses a bifid median tooth in the mentum, three equal-sized teeth in the pecten epipharyngis, and three teeth in the premandible.

Recently the first author collected many specimens of M. umbrosus from Zhejiang, Fujian, Guangdong, Hainan and Yunnan Provinces in Oriental China. Collections from Thailand by several collectors from Chiang Mai and Kasertsart University, deposited in the Australian National Insect Collection (ANIC, Canberra, Australia), show that specimens of Microtendipes, predominantly larvae but including pupae and adults, are common in standing and flowing waters. These can be allocated to M. umbrosus in our current understanding, with distribution extending from $19^{\circ} 26^{\prime} \mathrm{N}$ in Chiang Rai Province to $9^{\circ} 18^{\prime} \mathrm{N}$ in Phang Nga Province, including provinces of Chiang Mai, Kampaeng Phet, Lamphung, Loei, Pechabun, Prachuap Kiri Khan, Ranong, Sakorn Nakorn and Sra Kaew, at elevations ranging from sea level ('post-tsunami' ponds) to 600 m above sea level on Doi Inthanon (Chiang Mai)
(P.S. Cranston, pers. comm). In Australia, the species is restricted to the state of Queensland, between $17^{\circ} 01^{\prime} \mathrm{S}$ to $27^{\circ} 06^{\prime}$ S, including the tropical lakes Barrine and Eacham (Cranston \& Dimitriadis 2004). The larvae were very abundant early colonizers of an experimental artificial stream channel fed by water derived from a eutrophic dam in South East Queensland (specimens deposited in ANIC, P.S. Cranston, pers. comm.).

For a morphologically defined but somewhat variable species with such a wide range, we can assume that molecular data will show geographically discrete populations or cryptic species, as with Polypedilum nubifer (Cranston et al. 2016). However, sampling across such a wide range is time consuming, impractical and well beyond the scope of this study. Furthermore, the species in the range of its type locality (Africa, Kenya, Nyanza) would need to be sampled, as would specimens from throughout the range including species described as endemic to China but potentially synonyms of other named species.

Microtendipes shoukomaki Sasa

(Figures 2, 5B)

Microtendipes britteni [nec Edwards, 1929: 399]: Sasa 1980: 29; Qi \& Wang, 2006: 40.
Microtendipes shoukomaki Sasa, 1989a: 29.
Microtendipes ginzanefeus Sasa \& Suzuki, 2001: 12. Syn. nov.

Material examined. Holotype of Microtendipes shoukomaki, M (NSMT-I-Dip 4649), labelled, "No. 154: 31", JAPAN: Toyama, Shou River, 7.ii.1989. Holotype of Microtendipes ginzanefeus, M (NSMT), labelled, "No. 403: 51", JAPAN: Hokkaido, Mt. Ginzan, 2.ix.2000. Non-types. M, F (SUM), JAPAN: Mie, Takicho, small stream, 23.vii.1981; Le/Pe/M, 2 Pe/M, 8 Pe/F, F, 3 Pe, Le/Pe, 9 Le, 6 L (SUM), Shizuoka, Shimizu, Okitsu River, 3.ii. 1985 (emerged 9.ii-5.iii.1985); F (SUM), Shizuoka, Shimizu, Yanbara River, 16.vi.1985; M (SUM), as previous except 29.xi.1986; Pe/M (SUM), Shizuoka, Shimizu, Ihara River, 15.x. 1989 (emerged 30.x.1989); Pe/M (SUM), Shizuoka, Fujinomiya, Inase River, 15.vii. 1991 (emerged 28.vii.1991); Pe/M (SUM), Fukushima, Iwaki, Obisa River, 16.viii. 1991 (emerged 25.viii.1991); Pe/M (SUM), Fukushima, Hirono, Asami River, 15.viii. 2001 (emerged 21.viii.2001); $6 \mathrm{Le} / \mathrm{Pe} / \mathrm{M}$ (EJNU), CHINA: Guangdong, Guangzhou, Zengcheng District, Lan Stream, 30.iv. 2017 (emerged 5.vi.2017); Pe/M (EJNU), Anhui, Mt. Huang, Fuxi stream, $25 . v .2012$ (emerged 1.vi.2012); M (EJNU), Yunnan, Xishuangbanna, Yiwu County, Guafengzhai, 26.iv.2017.

Description. Male $(\mathrm{n}=8$). Total length $4.1-4.9,4.5 \mathrm{~mm}$.
Coloration. Thorax dark brown with 3 scutal vittae shining black. Abdomen green with somewhat darkened segments VI-IX or VII-IX. Wing without any marking. Legs yellow with all knee joints and foretibia dark brown.

Head. Temporals 14-21, 16. AR 2.0-2.1, 2.0. Clypeus with 17-25, 20 setae. Lengths of palpomeres 1-5 ($\mu \mathrm{m}$): $55-60,59$ (6); 60-70, 65 (6); 275-300, 286 (6); 250-275, 265 (6); 375-460, 409 (6), respectively. $\mathrm{Pm}_{4} / \mathrm{Pm}_{3} 0.91-$ $0.95,0.93(6) ; \mathrm{Pm}_{5} / \mathrm{Pm}_{4} 1.5-1.7,1.5(6) . \mathrm{Pm}_{3}$ with $2-4,3$ (7) sensilla clavata, longest $15-20,18$ (7) $\mu \mathrm{m}$ long.

Thorax. Lateral antepronotals 4-6, 5; acrostichals absent; dorsocentrals 9-13, 12; prealars 4-5, 4; scutellars 20-30, 23.

Wing. Length 2.8-3.3, 3.0 (6) mm. VR 1.1-1.2, 1.1 (6). Veins R, R_{1} and R_{4+5} with 16-24, 21 (6); 15-26, 21 (6); 25-42, 32 (6) setae, respectively. Squama with 15-20, 17 (6) setae.

Legs. Forefemur externally with 2 rows of proximally directed setae. Mid ta ${ }_{1}$ with $7-14,10$ sensilla chaetica, distalmost located $0.40-0.53,0.47$ from base. Lengths and proportions of leg segments as in Table 2.

Hypopygium (Figure 2A). Anal tergite with anterior bands medially separated from each other; median setae absent; anal point tapering toward pointed apex. Superior volsella (Figures 2B, C) stout, curved ventrally, pointed apically, with one basal and 2-7, 5 dorsolateral setae. Median volsella absent. Gonostylus 140-180, 155 (5) $\mu \mathrm{m}$ long, 4.0-4.4, 4.3 (5) times as long as broad at middle.

Female ($\mathrm{n}=11$). Total length 2.8-4.0, 3.6 mm .
Coloration. Similar to male.
Head. Temporals 16-24, 19. Antenna with terminal flagellomere 170-230, $194 \mu \mathrm{~m}$ long, as long as or slightly shorter than preceding 2 flagellomeres together; AR 0.36-0.49, 0.44 (10). Clypeus with 19-28, 22 setae. Lengths of palpomeres $1-5(\mu \mathrm{~m}): 45-60,57(10) ; 55-70,63$ (10); 270-320, 294 (10); 260-335, 290 (10); 355-490, 426 (10), respectively. $\mathrm{Pm}_{4} / \mathrm{Pm}_{3} 0.84-1.1,0.99$ (10); $\mathrm{Pm}_{5} / \mathrm{Pm}_{4} 1.3-1.6,1.5$ (10). Pm_{3} apically with $4-5,4$ sensilla clavata, longest $18-25,21 \mu \mathrm{~m}$ long.

FIGURE 2. Microtendipes shoukomaki Sasa, male (A-C), female (D), pupa (E-G) and larva (H-J). A, Hypopygium, dorsal view; B, C, superior volsella, dorsal view, showing variation; D, genitalia, ventral view; E, cephalic tubercles; F, abdomen, dorsal view; G, posterolateral corner of abdominal segment VIII, dorsal view; H, pecten epipharyngis; I, dorsal head sclerites; J, mentum.

Thorax. Lateral antepronotals 3-5, 4; acrostichals absent; dorsocentrals $13-21,17$; prealars $4-5,4$; scutellars 24-32, 28.

Wing. Length 2.6-3.7, 3.4 mm . VR 1.2 (6). Veins R, R_{1} and R_{4+5} with 24-31, 28 (9), 26-35, 29 (9) and 50-85, 62 (9) setae, respectively. Squama with 17-23, 20 setae.

Legs. Mid ta_{1} with 24-37, 28 sensilla chaetica, distalmost located $0.53-0.61,0.56$ from base. Lengths and proportions of leg segments as in Table 2.

TABLE 2. Lengths ($\mu \mathrm{m}$) and proportions of legs of Microtendipes shoukomaki Sasa, male $(\mathrm{n}=8)$ and female $(\mathrm{n}=11)$.

		fe	ti	ta_{1}	ta_{2}	ta_{3}	ta_{4}	ta_{5}	LR	BR
Male	P_{1}	$1192-1447$	$1167-1447$	$1497-1700$	$736-888$	$660-787$	$584-697$	$254-305$	$1.2-1.4$	$2.1-2.7$
		1269	1266	1621	793	698	614	279	1.3	2.4
	P_{2}	$1269-1523$	$1167-1421$	$736-838$	$406-482$	$305-355$	$178-203$	$102-127$	$0.58-0.65$	$3.2-4.5$
		1380	1294	799	450	337	197	124	0.62	3.7
	P_{3}	$1421-1700$	$1294-1523$	$939-1117$	$558-635$	$406-482$	$228-279$	$127-152$	$0.73-0.75$	$3.8-4.6$
		1526	1399	1031	603	428	251	136	0.74	4.3
Female	P_{1}	$1320-1624$	$1269-1472$	$1802-2005$	$812-964$	$761-888$	$635-787$	$279-330$	$1.3-1.4$	
		1493	1394	1887	895	833	720	307	1.4	
	P_{2}	$1371-1700$	$1269-1624$	$761-914$	$406-533$	$305-381$	$203-232$	$102-152$	$0.56-0.60$	
		1576	1479	858	482	353	208	127	0.58	
	P_{3}	$1523-1878$	$1371-1726$	$1041-1218$	$609-736$	$457-533$	$254-305$	$127-152$	$0.70-0.76$	
		1742	1578	1147	676	496	279	143	0.73	

Genitalia (Figure 2D). Sternite VIII with 14-21, 18 (7) setae on each side. Gonocoxite IX with 1-3, 2 (9) setae. Segment X without setae. Notum 175-188, 183 (3) $\mu \mathrm{m}$ long, 2.1 (3) times as long as ramus. Labium with microtrichia. Seminal capsule relatively large, 130-145, 139 (8) $\mu \mathrm{m}$ long, $1.1-1.2,1.1$ (8) times as long as broad, and $0.75-0.83,0.78$ (3) times as long as notum.

Pupa ($\mathrm{n}=19$). Total length $5.3-6.8,6.1 \mathrm{~mm}$.
Coloration. Exuviae largely pale brown.
Cephalothorax. Cephalic tubercles (Figure 2E) broadly rounded, 25-40, 34 (17) $\mu \mathrm{m}$ long, $0.25-0.32,0.29$ (17) times as long as basal width in mounted exuviae.

Abdomen (Figure 2F). Tergite I without spinules; II-V each with more or less extensive spinulation; VI with anterior and posterior transverse spinule bands; VII with anterolateral and posterolateral spinule patches; VIII and IX each with anterolateral spinules. Tergites II-VI each with anterior transverse band of brown and relatively large spines. Tergite II with row of $73-110,91$ caudal hooklets; its row $0.60-0.70,0.65$ times as long as tergal width. Paratergites II-V each with somewhat strong spinulation. Segment V with 3 Lt-setae on each side, VI-VII each with 4 Lt-setae; VIII with 5 Lt-setae. Anal comb (Figure 2G) with one large and 2-4, 3 small teeth. Anal lobe 270380, $329 \mu \mathrm{~m}$ long, $1.4-1.7,1.5$ times as long as broad, with 33-46, 39 lateral taeniae; dorsal seta absent. Male genital sac $1.2-1.3,1.3$ (6) times as long as anal lobe.

Fourth instar larva $(\mathrm{n}=18)$. Body length 7.1-9.5, 8.2 (6) mm.
Coloration. Head capsule largely dark brown, with somewhat extensive white areas around eye spots, and body yellowish in alcoholic specimen.

Head. Length 444-515, 477 (5) $\mu \mathrm{m}$ long; cephalic index $0.71-0.78,0.74$ (5). Antenna $0.30-0.36,0.33$ (6) times as long as head capsule; lengths of first to sixth segments $(\mu \mathrm{m}): 80-88,84(10) ; 13-18,15(8) ; 18-20,19(8)$; $13-16,13(8) ; 10-13,11(8) ; 5-8,7(8)$. AR 1.1-1.4, 1.2 (8). First segment with ring organ located $0.18-0.24,0.21$ (10) from base; blade $83-93$, 87 (4) $\mu \mathrm{m}$ long, and accessary blade 8 (1) $\mu \mathrm{m}$ long. Second and third segments each with Lauterborn organ $13-18,15$ (8) $\mu \mathrm{m}$ long. Third segment with style 8 (6) $\mu \mathrm{m}$ long. Labral lamella with $12-18$, 15 (16) teeth. Pecten epipharyngis with 3 teeth (Figure 2H). Premandible (Figure 2I) 95-110, 103 (12) $\mu \mathrm{m}$ long, with 3 teeth. Mandible 165-188, 178 (11) $\mu \mathrm{m}$ long; seta subdentalis 43-45, 44 (5) $\mu \mathrm{m}$ long. Mentum (Figure 2J) 140-168, 156 (12) $\mu \mathrm{m}$ wide; median tooth bifid, pale, $30-43,39$ (17) $\mu \mathrm{m}$ wide. Ventromental plate $70-85,80$ (12)
$\mu \mathrm{m}$ long, $110-128$, 122 (12) $\mu \mathrm{m}$ wide, with 26-30, 27 (12) striae; distance between both plates $0.46-0.54,0.50$ (12) times as broad as width of mentum. Postmentum 175-200, 187 (17) $\mu \mathrm{m}$ long.

Body. With 8 anal setae.
Remarks. The male much resembles that of European M. britteni (Edwards) in the entirely dark brown foretibia, and the hypopygium with no median anal tergal seta, a triangular, apically pointed anal point, and lacking median volsellae. Additionally, the larval head capsule is largely dark brown as in the specimen deposited under the name of M. britteni in the Zoologische Staatssammlung Muenchen, Germany (M. Spies, pers. comm.). However, the species is separable from M. britteni by the pupal morphology. The cephalic tubercles are broadly rounded in the former, whereas relatively short, somewhat conical or dome-shaped in the latter (Laville 1971: 202, fig. 7, a; Langton \& Visser 2003, fig. 119e).

Judging from the pupal and larval morphology, M. shoukomaki belongs to the same group, M. pedellus group, as M. britteni (Pinder \& Reiss 1983 for the larva, 1986 for the pupa). Indeed, M. shoukomaki was misidentified as M. britteni by Sasa (1980: 29), who distinguished M. shoukomaki from M. britteni by the parallel-sided anal point in his key to males (Sasa 1998: 34, couplet 5). After re-examination of the holotype of M. shoukomaki, it was revealed that the anal point is not parallel-sided, but triangular and apically pointed. The reared Chinese material from Guangdong and Anhui Provinces also points to previous records of M. britteni by Qi \& Wang (2006) being M. shoukomaki, and thus perhaps no true M. britteni exists in East Asia.

The male also resembles North American M. caducus Townes, 1945 in the thoracic scutum lacking acrostichal setae, the hypopygium without median anal tergal seta, and the triangular anal point, but differs in the dark brown thorax and the entirely darkened foretibia. In M. caducus, the thorax is light brown, and the foretibia is whitish medially, according to Townes (1945: 24).

The type series of M. ginzanefeus Sasa \& Suzuki, 2001 comprises holotype and a single paratype. Reexamination of the type series showed that the holotype is a male of M. shoukomaki and the paratype is that of M. umbrosus. The original description is based not on the holotype, but on the paratype. Although the holotype is in too poor condition, the anal tergite with no median seta, the anal point tapering toward the apex, and the apically pointed superior volsella can be recognized (Figure 5B).

Microtendipes famiefeus Sasa

(Figure 3)

Microtendipes truncatus Kawai \& Sasa, 1985: 18 [preoccu. Kieffer 1922: 13]; Qi \& Wang 2006: 43.
Microtendipes famiefeus Sasa, 1996: 53.
Microtendipes tusimadeeus Sasa \& Suzuki, 1999: 5. Syn. nov.
? Microtendipes rydalensis [nec Edwards, 1929: 404]: Tanaka, Sasa \& Hashizume 2003: 122.
Material examined. Holotype of Microtendipes famiefeus, M (NSMT-I-Dip 4940), labelled, "No. 255: 11", JAPAN: Toyama, Lake in the Toyama City Family Park, 21.ix.1993. Holotype of Microtendipes tusimadeeus, M (NSMT-I-Dip 5245), labelled, "No. 373: 5", JAPAN: Nagasaki, Tsushima Island, Izuhara, Azugawa River, 23.iii.1998. Non-types. M, Pe/F, L (SUM), JAPAN: Miyagi, Shiroishi, Kamasaki Hot Spring, Yukawa River, 1.i. 1997 (emerged 11 and 19.i.1997); Pe/M, L (SUM), Fukushima, Iwaki, Yaguki, Matuyamazawa, 10.viii. 1997 (emerged 30.viii.1997); $3 \mathrm{Pe} / \mathrm{M}$ (SUM), as previous except 2.i. 1998 (emerged 19-29.i.1998); $3 \mathrm{M}, \mathrm{Pe} / \mathrm{F}$ (SUM), as previous except 15.vii. 2012 (emerged 3-7.viii.2012); Le/Pe/F (SUM), as previous except 5.i. 2013 (emerged 13.i.2013); M (SUM), as previous except $27 . i i i .2013$ (emerged 10.iv.2013); $2 \mathrm{Pe} / \mathrm{M}$ (SUM), Iwaki, Obisa River, 5.i. 1990 (emerged 15 and 20.ii.1990); Pe/M (SUM), Fukushima, Naraha, Kido River, 24.xii.1991; Pe/M (SUM), Fukushima, Hirono, Asami River, $25 . i i i .2006$ (emerged 1.iv.2006); 2 M (SUM), Tochigi, Nakagawa, Naka River, 4.v.1996; M (SUM), Tochigi, Nasukarasuyama, Naka River, 4.v.1999; M (SUM), Shizuoka, Shimizu, Yanbara River, 28.iv.2000; 5 M (EJNU), CHINA: Anhui, Mt. Huang, Fuxi stream, 26.v.2012; M (EJNU), Liaoning, Benxi, Xiaodonggou village, 6.vii.2015; Pe (EJNU), Guangdong, Shantou, Jinxi stream, 14.x.2016; 2 Pe (EJNU), Yunnan, Anning, Qinglongxia, 23.x. 2016.

Description. Male $(\mathrm{n}=16)$. Total length $3.0-4.3,3.6 \mathrm{~mm}$.
Coloration. Thorax yellowish green with scutal vittae indistinct. Abdomen green, occasionally with dark segments VII-IX. Wing without any marking. Legs entirely pale yellow.

Head. Temporals 10-17, 12. AR 1.3-1.7, 1.4 (15). Clypeus with $12-17$, 14 setae. Lengths of palpomeres $1-5$ $(\mu \mathrm{m}): 40-55,46(15) ; 40-60,50(15) ; 190-255,226(15) ; 145-215,183$ (15); 230-380, 303 (15), respectively. $\mathrm{Pm}_{4} / \mathrm{Pm}_{3} 0.75-0.86,0.81$ (15); $\mathrm{Pm}_{5} / \mathrm{Pm}_{4} 1.5-1.8,1.7$ (15). Pm_{3} apically with 4-5, 4 sensilla clavata, longest 18-23, $19 \mu \mathrm{~m}$ long.

Thorax. Lateral antepronotals $0-2,1$ (15); acrostichals $0-2$, 2 ; dorsocentrals $5-11,7$; prealars $3-4$, 3 ; scutellars 7-12, 9 (15).

Wing. Length 1.9-3.0, 2.5 mm . VR 1.1-1.2, 1.2. Veins R, R_{1} and R_{4+5} with $14-29,21 ; 11-19,16$; and $18-50,31$ setae, respectively. Squama with 5-10, 7 setae.

Legs. Mid ta ${ }_{1}$ with 3-5, 4 (15) sensilla chaetica, distalmost located 0.35-0.62, 0.46 (15) from base. Lengths and proportions of leg segments as in Table 3.

Hypopygium (Figure 3A). Anal tergite with 1-8, 4 median setae on each end of tergal bands; anal point (Figure 3B) parallel-sided, apically truncated and curved ventrad. Superior volsella (Figures 3C, D) relatively broad, curved ventrally, with one basal seta arising from large tubercle and 3-10, 5 dorsolateral setae. Median volsella well developed, composed of tubercles bearing 5-12, 8 (14) apical setae. Gonostylus 130-165, 150 (12) $\mu \mathrm{m}$ long, 3.6-4.2, 3.9 (12) times as long as broad at middle.

Female ($\mathrm{n}=3$). Total length 2.5-3.6 (2) mm.
Coloration. Similar to male.
Head. Temporals 9-10, 9. Antenna with terminal flagellomere 140-155, $150 \mu \mathrm{~m}$ long, shorter than preceding 2 flagellomeres together; AR $0.36-0.42,0.40$. Clypeus with $16-18,17$ setae. Lengths of palpomeres $1-5(\mu \mathrm{~m})$: $50-$ 60,$55 ; 50-65,58 ; 205-265,237 ; 185-235,210 ; 320-390,350$, respectively. $\mathrm{Pm}_{4} / \mathrm{Pm}_{3} 0.88-0.90,0.89 ; \mathrm{Pm}_{5} / \mathrm{Pm}_{4}$ 1.6-1.7, 1.7. Pm_{3} with 4 sensilla clavata, longest $18-20,19 \mu \mathrm{~m}$ long.

Thorax. Lateral antepronotals 1 (2); acrostichals $0-2,1$; dorsocentrals $10-13$, 11; prealars 3-4, 3; scutellars $7-$ 10, 8.

Wing. Length 2.0-3.2 (2) mm. VR 1.2 (2). Veins R, R_{1} and R_{4+5} with 18-34 (2), 16-24 (2) and 29-51 (2) setae, respectively. Squama with $8-12,9$ setae.

Legs. Forefemur externally with 2 rows of proximally directed setae. Mid ta_{1} with 6-7 (2) sensilla chaetica, distalmost located $0.47-0.50(2)$ from base. Lengths and proportions of leg segments as in Table 3.

TABLE 3. Lengths ($\mu \mathrm{m}$) and proportions of legs of Microtendipes famiefeus Sasa, male $(\mathrm{n}=16)$ and female $(\mathrm{n}=2)$.

		fe	ti	ta_{1}	ta_{2}	ta_{3}	ta_{4}	ta_{5}	LR	BR
Male	P_{1}	$836-1167$	$761-1091$	$1066-1523$	$482-736$	$406-619$	$330-508$	$152-228$	$1.3-1.6$	$2.1-2.9$
		1040	923	1346	638	537	453	200	1.5	2.4
	P_{2}	$914-1294$	$812-1142$	$533-787$	$279-381$	$203-305$	$152-206$	$76-102$	$0.66-0.73$	$3.2-5.0$
		1121	988	681	332	257	175	92	0.69	3.8
	P_{3}	$964-1345$	$838-1218$	$660-990$	$381-533$	$305-431$	$178-254$	$102-127$	$0.73-0.82$	$3.7-5.0$
		1158	1060	829	471	381	221	113	0.78	4.2
Female	P_{1}	$990-1421$	$761-1091$	$1345-1802$	$609-812$	$533-711$	$457-609$	$178-228$	$1.7-1.8$	
	P_{2}	$990-1447$	$863-1244$	$609-863$	$279-406$	$203-305$	$127-178$	$76-102$	$0.69-0.71$	
	P_{3}	$1015-1497$	$888-1345$	$711-1041$	$381-558$	$330-457$	$178-228$	$102-129$	$0.77-0.80$	

Genitalia (Figure 3E). Sternite VIII with 6-16, 11 setae on each side. Gonocoxite IX with 1 seta. Segment X with 3-6, 4 setae on each side. Notum 115-150, $130 \mu \mathrm{~m}$ long, $1.5-2.1,1.7$ times as long as ramus. Labium without microtrichia. Seminal capsule 55-58 (2) $\mu \mathrm{m}$ long, 1.1-1.2 (2) times as long as broad, and 0.37-0.46 (2) times as long as notum.

Pupa ($\mathrm{n}=11$). Total length 3.8-4.9, 4.3 mm .
Coloration. Exuviae pale brown with infuscated thorax.
Cephalothorax. Cephalic tubercles (Figure 3F) dome-shaped, 25-50, 39 (8) $\mu \mathrm{m}$ long, $0.25-0.56,0.47$ (8) times as long as basal width in mounted exuviae. Thorax weakly pebbled on dorsum.

FIGURE 3. Microtendipes famiefeus Sasa, male (A-D), female (E), pupa (F-I) and larva (J-M). A, Hypopygium, dorsal view; B, apex of anal tergite with anal point, lateral view; C, D, superior volsella and median volsella, ventral view, showing variation; E, genitalia, ventral view; F, cephalic tubercles; G, abdomen, dorsal view; H, posterolateral corner of abdominal segment VIII, dorsal view; I, anal comb of abdominal segment VIII, showing variation; J, antenna; K, premandible; L, pecten epipharyngis; M, mentum.

Abdomen (Figure 3G). Tergites I, VII and IX without spinules; II-V each with more or less extensive spinulation; VI with anterior and posterior spinule patches; VIII with anterolateral spinules. Tergites II-V each with anterior transverse band of pale spines. Tergite II with row of 47-81, 67 (10) caudal hooklets; its row 0.46$0.64,0.54$ (5) times as long as tergal width. Segment V with 3 Lt -setae on each side, VI-VIII each with 4 Lt-setae. Anal comb (Figures $3 \mathrm{H}, \mathrm{I}$) with one strong tooth and $0-5$, 1 weak tooth. Anal lobe 215-260, 237 (8) $\mu \mathrm{m}$ long, 1.7$1.9,1.8(8)$ times as long as broad, with fringe of 29-42, 36 lateral taeniae; with dorsal seta located $0.18-0.27,0.21$ (8) from apex. Male genital sac 1.1-1.3, 1.1 (5) times as long as anal lobe.

Fourth instar larva ($\mathrm{n}=3$). Body length 5.3 (1) mm.
Coloration. Generally white except dark brown postoccipital margin in alcoholic specimen.
Head. Length 345-400 (2) $\mu \mathrm{m}$ long; cephalic index 0.78 (1). Antenna (Figure 3J) 0.42-0.44 (2) times as long as head capsule; lengths of first to sixth segments ($\mu \mathrm{m}$): 88-95, 91; 23-28(2); 20-23(2); 15 (1); 11 (1); 6 (1). AR 1.1 (1). First segment with ring organ located $0.08-0.11,0.09$ from base; blade 78 (1) $\mu \mathrm{m}$ long, barely reaching apex of terminal segment; and accessary blade 15 (1) $\mu \mathrm{m}$ long. Second and third segments each with Lauterborn organ 20 (2) $\mu \mathrm{m}$ long. Third segment with style $8-10$ (2) $\mu \mathrm{m}$ long. Premandible (Figure 3 K) $75-85,82 \mu \mathrm{~m}$ long, with 5 teeth. Labral lamella with 13-15 (2) teeth. Pecten epipharyngis with one large middle tooth and 6 pairs of lateral teeth becoming smaller laterally (Figure 3L). Mandible 125-135, $128 \mu \mathrm{~m}$ long; seta subdentalis 28-30 (2) $\mu \mathrm{m}$ long. Mentum (Figure 3M) 113-125, $119 \mu \mathrm{~m}$ wide; median tooth trifid, pale, 33-40, $35 \mu \mathrm{~m}$ wide. Ventromental plate $53-60,58 \mu \mathrm{~m}$ long, $93-95,94 \mu \mathrm{~m}$ wide, with $16-19$ (2) striae; distance between both plates $0.51-0.56$ (2) times as broad as width of mentum. Postmentum 138-170, $157 \mu \mathrm{~m}$ long.

Body. With 8 anal setae.
Remarks. In the original description of M. famiefeus Sasa, the author (Sasa 1996: 54) wrote that the species is separable from M. truncatus Kawai \& Sasa as the male has no antepronotal seta and the hypopygium has dorsal appendages with a conspicuous ridge along the outer margin and stout ventral appendages. After re-examination of the holotype male, it had become clear that the male possesses two distinct setal pits on the antepronotum. Generally, the ridge of the superior volsella is not stable in the appearance, which is variable depending on the mounting orientation. Indeed, Kawai \& Sasa (1985: 18, fig. 3) drew slightly the apical ridge of the volsella in the original description of M. truncatus. Not only superior volsellae but also inferior volsellae may be deformed when the specimen is compressed by the cover glass. Therefore, Microtendipes famiefeus is considered to be conspecific with M. truncatus Kawai \& Sasa, which is a junior primary homonym of M. truncatus Kieffer, 1922 described from Cameroon in central Africa.

Microtendipes tusimadeeus Sasa \& Suzuki, 1999 was established on the basis of three male specimens collected from Tsushima Island in western Japan. By the comparison between the holotypes of M. tusimadeeus and M. famiefeus, however, it was proved that there is no major difference between them. Microtendipes tusimadeeus is a junior synonym of M. famiefeus.

The male of M. famiefeus much resembles that of European M. rydalensis (Edwards, 1929) in the yellowish coloration on the body and legs, the hypopygium with broad superior volsellae and well-developed median volsellae, but differs in the hypopygial anal point with a truncate apex. In the latter, the anal point is pointed apically (Pinder 1976). The closer examination of the specimens deposited in SUM revealed a more distinct difference between the anal points of both the males. In the lateral view, the anal point is narrow and suddenly bent ventrad at the apex in M. famiefeus, whereas broad and gently curved ventrad along its entire length in M. rydalensis (Pinder 1976: 179, fig. 1). The immature forms, pupa and larva, are also very similar to those of M. rydalensis, but barely separable by the cephalic tubercles of the pupa and the pecten epipharyngis of the larva. The cephalic tubercles are relatively small, dome-shaped in M. famiefeus, whereas broadly rounded in M. rydalensis (Langton \& Visser 2003, fig. 123g). The pecten epipharyngis is armed with a large median tooth and 6 pairs of small lateral teeth, becoming smaller laterally in M. famiefeus, whereas in M. rydalensis, it has three large media teeth and 2 or 3 pairs of small lateral teeth (Pinder 1976: 179, fig. 5d; Epler et al. 2013: 506, fig. 10.41, G).

Microtendipes famiefeus is placed in the M. rydalensis group, because the pupa has anterior transverse bands consisting of pale spines on the abdominal tergites II-V, 4 Lt-setae on the abdominal segment VIII, and an anal tergite without spinules (Pinder \& Reiss 1986), and the larva possesses a mentum with a trifid median tooth, a pecten epipharyngis with one large middle tooth and 12 small lateral teeth, and premandibles with 5 teeth (Pinder \& Reiss 1983).

Tanaka et al. (2003) recorded a chironomid midge under the name M. rydalensis from a rice paddy area in

Gunma, central Japan. Actually, the species may be M. famiefeus, although it is a record without morphological accounts. Recently M. famiefeus was recorded, under the name of M. truncatus Kawai \& Sasa, from Fujian, Guizhou, Yunnan and Shaanxi Provinces in China (Qi \& Wang 2006). The first author also collected the species from Anhui, Guangdong and Yunnan Provinces. Microtendipes famiefeus may be widely distributed in China.

Microtendipes parachloris Niitsuma \& Tang sp. nov.

(Figure 4)

Microtendipes chloris [nec Meigen, 1818: 28]: Sasa 1984: 56; Sasa \& Kamimura 1987: 16.
Type material. Holotype: M (NSMT), labelled, "No. 101: 81", JAPAN: Hokkaido, Lake Akan, 17.vi.1982. Paratype: M (NSMT), labelled, "No. 39: 86, 87", JAPAN: Tochigi, Nikko, Lake Yunoko, 28.iv. 1979 (emerged 26.v.1979).

Derivatio nominis. From Greek para-, a prefix meaning near, like, and the name of Microtendipes chloris (Meigen), referring to the morphological similarity of the male adults of both the species.

Description. Male ($\mathrm{n}=2$). Total length $5.3-5.8 \mathrm{~mm}$.
Coloration. Thorax entirely dark brown; scutal vittae indistinct. Abdomen largely pale yellow; tergite I darkened anteriorly, tergites II-V each with vertically long and dark marking anteromedially (Figure 4A), tergites VI-IX darkened entirely; hypopygium dark brown on gonocoxite and gonostylus. Wing without any marking on membrane. Foreleg brown with apical $0.10-0.11$ of femur dark brown; tibia and ta_{1} uniformly dark brown. Mid and hind legs brown, each with femur and tibia somewhat darker.

Head. Temporals 17-22. AR 2.5-2.7. Clypeus with 24-29 setae. Lengths ($\mu \mathrm{m}$) of palpomeres 1-5: 60-75, 7590, 245-310, 260-310, 360-450, respectively. $\mathrm{Pm}_{4} / \mathrm{Pm}_{3} 1.0-1.1 ; \mathrm{Pm}_{5} / \mathrm{Pm}_{4} 1.4-1.5 . \mathrm{Pm}_{3}$ with 3 sensilla clavata, longest $25 \mu \mathrm{~m}$ long.

Thorax. Antepronotum with 3-4 lateral setae. Acrostichals 4-7; dorsocentrals 9-15, uniserial; prealars 4-5, uniserial. Scutellum with 26-27 setae.

Wing. Length from arculus to apex $3.9-4.1 \mathrm{~mm}$. Veins R, R_{1} and R_{4+5} with $24-25,22-28,38-43$ setae, respectively. VR 1.1. Squama broken off.

Legs. Forefemur externally with 2 rows of 20-28 setae directed basally on distal half; foretarsus without long setae. Mid ta ${ }_{1}$ with $7-9$ sensilla chaetica, distalmost located $0.43-0.45$ from base. Lengths and proportions of legs as in Table 4.

TABLE 4. Lengths ($\mu \mathrm{m}$) and proportions of legs of Microtendipes parachloris Niitsuma \& Tang \mathbf{n}. sp., male ($\mathrm{n}=2$)

	fe	ti	ta_{1}	ta_{2}	ta_{3}	ta_{4}	ta_{5}	LR	BR
P_{1}	$1523-1650$	$1650-1777$	$1878-2107$	$990-1091$	$838-888$	$635-660$	305	$1.1-1.2$	$1.9-2.3$
P_{2}	$1726-1904$	$1650-1751$	$1091-1142$	$558-609$	$431-457$	$279-305$	$152-178$	$0.65-0.66$	$3.6-5.3$
P_{3}	$1954-2107$	$1878-2056$	$1447-1574$	$888-990$	635	$330-381$	203	0.77	$4.3-4.8$

Hypopygium (Figure 4B). Anal tergite with 2-8 median setae on each end of tergal bands; posterior tergal margin with 18-21 setae on each side. Anal point (Figure 4C) nearly parallel-sided with truncate apex. Superior volsella (Figure 4D) sickle-shaped, pointed at apex, with one basal and 7-8 dorsolateral setae. Median volsella poorly developed, with 2-3 clustered setae; tubercle indistinct. Inferior volsella reaching beyond tip of gonocoxite, stout, with many recurved dorsal setae on distal $2 / 3$. Transverse sternapodeme broad.

Female, pupa and larva. Unknown.
Remarks. Sasa (1984) recorded a single male under the name of M. chloris (Meigen, 1818) from Lake Yunoko in Tochigi, central Japan. The same name was also assigned to the male collected from Lake Akan in Hokkaido, northern Japan, by Sasa \& Kamimura (1987).

Indeed, the male is very similar to that of M. chloris in the hypopygial structure: anal point parallel-sided; superior volsella sickle-shaped with a basal and several dorsolateral setae; and inferior volsella long, reaching beyond the apex of the gonocoxite. For the same reason, the male resembles that of M. pedellus (De Geer, 1776),
too. However, the male will not key past couplet 8 in the Langton \& Pinder (2007: 177) because of the uniformly darkened foretibia and the foretarsus without long setae, and differs from the males of these two species in the poorly developed median volsella, only bearing a few setae, in the hypopygium. The males of M. pedellus and M. chloris are armed with distinct tubercles of the median volsella bearing several setae (Langton \& Pinder 2007: 110, fig. 219 C, D).

FIGURE 4. Microtendipes parachloris Niitsuma \& Tang sp. nov., holotype male, NSMT No. 101: 81 (A, B) and paratype male, NSMT No. 39: 87 (C, D). A, Abdominal tergites III-IV, dorsal view, showing marking pattern; B, hypopygium, dorsal view; C, anal point, dorsal view; D, superior volsella and median volsella, dorsal view.

FIGURE 5. Microtendipes spp., male hypopygium. A, Holotype of Microtendipes tusimacedeus Sasa \& Suzuki, NSMT-I-Dip 5139; B, holotype of Microtendipes ginzanefeus Sasa \& Suzuki, NSMT No. 403: 51.

The male somewhat resembles that of M. umbrosus in the hypopygium with a parallel-sided anal point, sickleshaped superior volsellae, and poorly developed median volsellae, but differs from it in the relatively high value of AR 2.5-2.7, the wings without any marking, and the entirely dark brown basitarsus of the foreleg. The male of M. umbrosus has a low value of AR 1.7-2.1, a cloud on the wing membrane, and a basitarsus darkened at most basally in the foreleg.

Polypedilum (Cerobregma) yamasinense (Tokunaga) comb. nov.

Chironomus (Microtendipes) yamasinensis Tokunaga, 1940: 295.
Microtendipes yamasinensis: Sasa \& Kikuchi 1995: 34.
Polypedilum kamotertium Sasa, 1989b: 64; Sasa \& Kikuchi 1995: 37 (as Polypedilum s. str.). Syn. nov.

Remarks. In the original description of Chironomus (Microtendipes) yamasinensis Tokunaga, 1940, the author (p. 296) wrote, " R_{2+3} extending closely along R_{1} ", and "ventral appendages compressed, with three long setae on apical end". The combination of these features occurs in Polypedilum, rather than Microtendipes (Edwards 1929, Freeman 1955, Cranston et al. 1989). He continued, "styles swollen basally, narrowed on apical half, with long bristles on apical part". It shows that the species belongs to the subgenus Cerobregma Sæther \& Sundal, 1999 of the genus Polypedilum. The type of Polypedilum (Cerobregma) yamasinense may be still extant in the Kyushu University Museum as an alcoholic specimen, but even so, its condition may be too poor to make necessary observations. Therefore, no type material was examined.

Sæther \& Sundal (1999: 345) transferred P. (P.) kamotertium Sasa to the subgenus Cerobregma. Kobayashi et al. (2003) redescribed P. (C.) kamotertium based on the males, females, pupae and larvae collected from Aomori, Kyoto and Nagasaki in Japan, including the types, and noted that the male is characterized by an AR of 1.1-1.3; the inferior volsella bilobed apically, bearing many setae on the dorsal lobe and a few setae on the ventral lobe; the superior volsella arcuated, bearing 1-4 lateral and 2-13 basal setae; and the gonostylus apically with a row of 4-7 long setae. Further, according to Sasa (1989b: 64), the holotype male has a long setal beard (BR 3.8-4.4) on the foretarsi. These features are consistent with the description by Tokunaga (1940), especially in the inferior and superior volsellae (plate 3, figs 69 and 72). Polypedilum (C.) kamotertium is a junior synonym of P. (C.) yamasinense.

Polypedilum (Polypedilum) tsukubaense (Sasa)

Microtendipes tsukubaensis Sasa, 1979: 17.
Polypedilum tsukubaense: Sasa 1983: 12; Sasa \& Suzuki 1991: 94 (as Polypedilum s. str.).
Microtendipes iriocedeus Sasa \& Suzuki, 2000: 12. Syn. nov.

Remarks. The holotype male of M. iriocedeus Sasa \& Suzuki may be lost (A. Shinohara, pers. comm.). In the original description of M. iriocedeus, the authors (2000: 13) wrote, "Wing bare, without dark marks, R2+3 in contact with R1. Tip of fore tibia with a long, narrow and apically pointed terminal process", and "Oral or anterior margin of 8th abdominal segment is inverted V-shaped like in Polypedilum species". These are features of Polypedilum rather than Microtendipes. Further, they draw the foretibial scale in the somewhat lateral view (p. 31, fig. 12e), and noted that the superior volsella is somewhat sickle-shaped, apically hooked, and has 1 or 2 inner setae arising at about basal one-third, and one lateral seta, and the gonostylus is slender, widest at about middle. It shows that the species belongs Polypedilum s. str. and conspecific with P. (P.) tsukubaense (Sasa).

The adults, male and female, are very similar to those of Polypedilum (Polypedilum) flavescens (Johannsen, 1932) collected from Indonesia in the morphology or even conspecific, especially the structure of male hypopygium. Polypedilum (P.) tsukubaense almost satisfies the original description of P. flavescens, except that the foretibial scale is rounded apically. In P. (P.) flavescens, the scale is pointed apically, according to Johannsen (1932: 521).

Acknowledgements

We are grateful to Dr. Akihiko Shinohara (NSMT) for the loan of specimens in the Sasa collection, Drs. Martin Spies (Zoologische Staatssammlung Muenchen, Germany) and Joel Moubayed-Breil (Freshwater \& Marine Biology, France) for their information on the European Microtendipes, and to Professor Peter S. Cranston (Australian National University, Canberra, Australia) for providing information concerning Thailand and Australia and giving valuable advice. Special thanks also go to Professor Takami Nobuhara (Faculty of Education, Shizuoka University, Japan), who allowed us to use his digital photograph device. This work was supported by the National Natural Science Foundation of China (No. 41672346), and two visiting grants (2015ZYXZ-002 and 2016XJZD014) from Jinan University.

References

Ashe, P. \& Cranston, P.S. (1990) Family Chironomidae. In: Soós, Á. \& Papp, L. (Eds.), Catalogue of Palaearctic Diptera. Vol. 2. Akadémiai Kiadó, Budapest, pp. 113-499.

Cranston, P.S. (2000) Electronic Guide to the Chironomidae of Australia. Picture 4. Available from: http://apes.skullisland.info/ node/3 (accessed 19 May 2017)
Cranston, P.S. (2013) 2. The larvae of the Holarctic Chironomidae (Diptera) - Morphological terminology and key to subfamilies. In: Andersen, T., Cranston, P.S. \& Epler, J.H. (Sci. Eds.), The larvae of Chironomidae (Diptera) of the Holarctic Region - Keys and diagnoses. Insect Systematics \& Evolution, 66 (Supplement), 13-24.
Cranston, P.S., Dillon, M.E., Pinder, L.C.V. \& Reiss, F. (1989) 10. The adult males of Chironominae (Diptera: Chironomidae) of the Holarctic region - Keys and diagnoses. In: Wiederholm, T. (Ed.), Chironomidae of the Holarctic region. Keys and diagnoses. Part 3. Adult males. Entomologica scandinavica, 34 (Supplement), 353-502.
Cranston, P.S. \& Dimitriadis, S. (2004) The Chironomidae (Diptera) larvae of Atherton Tableland Lakes, North Queensland, Australia. Memoirs of the Queensland Museum, 49 (2), 573-588.
Cranston, P.S. \& Martin, J. (1989) 26. Family Chironomidae. In: Evenhuis, N.L. (Ed.), Catalog of the Diptera of the Australasian and Oceanian Regions. Bishop Museum Press, Honolulu \& Brill, E.J., Leiden, pp. 252-274.
Cranston, P.S., Martin, J. \& Spies, M. (2016) Cryptic species in the nuisance midge Polypedilum nubifer (Skuse) (Diptera: Chironomidae) and the status of Tripedilum Kieffer. Zootaxa, 4079 (4), 429-444. https://doi.org/10.11646/zootaxa.4079.4.3
De Geer, C. (1776) Mémoires pour servir à l'histoire des insects. Tome sixième. P. Hesselberg, Stockholm, viii +523 pp.
Edwards, F.W. (1929) British non-biting midges (Diptera, Chironomidae). Transactions of the Entomological Society of London, 77, 279-430. https://doi.org/10.1111/j.1365-2311.1929.tb00692.x
Epler, J.H., Ekrem, T. \& Cranston, P.S. (2013) 10. The larvae of Chironominae (Diptera: Chironomidae) of the Holarctic Region - Keys and diagnoses. In: Andersen, T., Cranston, P.S. \& Epler, J.H. (Sci. Eds.), The larvae of Chironomidae (Diptera) of the Holarctic Region. Keys and diagnoses. Insect Systematics \& Evolution, 66 (Supplement), 387-556.
Freeman, P. (1955) Chironomidae (Diptera Nematocera). Exploration du Parc National Albert. Mission G.F. de Witte, 83, 1-41.
Freeman, P. (1958) A study of the Chironomidae of Africa south of the Sahara. Part IV. The Bulletin of British Museum (Nature History), Entomological Series, 6, 263-363. https://doi.org/10.5962/bhl.part. 17110
Freeman, P. (1961) The Chironomidae (Diptera) of Australia. Australian Journal of Zoology, 9, 611-737. https://doi.org/10.1071/ZO9610611
Freeman, P. \& Cranston, P. S. (1980) 11. Family Chironomidae. In: Crosskey, R.W. (Ed.) Catalogue of the Diptera of the Afrotropical region. British Museum (Natural History), London, pp. 175-202.
Hazra, N., Niitsuma, H. \& Chaudhuri, P.K. (2016) Checklist of chironomid midges (Diptera: Chironomidae) of the Oriental Region. Occasional Paper No. 376. Records of the Zoological Survey of India, Kolkata, 204 pp.
Johannsen, O.A. (1932) Chironominae of the Malayan subregion of the Dutch East Indies. Archiv für Hydrobiologie, 11 (Supplement), 503-552.
Kawai, K. \& Sasa, M. (1985) Seven new species of chironomid midges (Diptera, Chironomidae) from the Ohta River, Japan. The Japanese Journal of Limnology, 46, 15-24. https://doi.org/10.3739/rikusui.46.15
Kieffer, J.J. (1922) Chironomides de l'Afrique équatoriale (2° partie). Annales de la Société entomologique de France, 91, 172.

Kobayashi, T. \& Endo, K. (2008) Synonymic notes on some species of Chironomidae (Diptera) described by Dr. M. Sasa. Zootaxa, 1712, 49-64.
Kobayashi, T., Ohtaka, A. \& Takahashi, T. (2003) The second record of ectoparasitic Chironomidae on Trichoptera from Japan, Polypedilum (Cerobregma) kamotertium Sasa, 1989 (Insecta, Diptera, Chironomidae, Chironomini). Spixiana, 26, 83-91.

Langton, P.H. \& Pinder, L.C.V. (2007) Keys to the adult male Chironomidae of Britain and Ireland. Volume 1. Introductory text, keys, references, checklist and index. Volume 2. Illustrations of the hypopygia and a supplement identifying sixteen species recently recorded from Britain and Ireland. Freshwater Biological Association Scientific Publication, 64, 1-231 + 1-168.
Langton, P.H. \& Visser, H. (2003) Chironomidae exuviae - a key to pupal exuviae of the West Palaearctic Region. World Biodiversity Database. Expert Center for Taxonomic Information, Amsterdam. [CD-ROM Series]
Laville, H. (1971) Recherches sur les Chironomides (Diptera) lacustres du massif de Néouvielle (Hautes-Pyrénées). Première partie. Systématique, écologie, phénologie. Annales de Limnologie, 7, 173-332. https://doi.org/10.1051/limn/1971006
Meigen, J.W. (1818) Systematische Beschreibung der bekannten europäischen zweiflügeliegen Insekten. Erster Teil. F.W. Forstmann, Aachen, 332 pp.
Oliver, D.R., Dillon, M.E. \& Cranston, P.S. (1990) A Catalog of Nearctic Chironomidae. Research Branch, Agriculture Canada, Ottawa, 89 pp.
Pinder, L.C.V. (1976) Morphology of the adult and juvenile stages of Microtendipes rydalensis (Edw.) comb. nov. (Diptera, Chironomidae). Hydrobiologia, 48, 179-184. https://doi.org/10.1007/BF00040170
Pinder, L.C.V. \& Reiss, F. (1983) 10. The larvae of Chironominae (Diptera: Chironomidae) of the Holarctic region - Keys and diagnoses. In: Wiederholm, T. (Ed.), Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scandinavica, 19 (Supplement), 293-435.
Pinder, L.C.V. \& Reiss, F. (1986) 10. The pupae of Chironominae (Diptera: Chironomidae) of the Holarctic region - Keys and diagnoses. In: Wiederholm, T. (Ed.), Chironomidae of the Holarctic region. Keys and diagnoses. Part 2. Pupae. Entomologica Scandinavica, 28 (Supplement), 299-456.
Qi, X., Li, Y.F., Wang, X.H. \& Shao, Q.J. (2014) A new species of Microtendipes (Diptera: Chironomidae) with a median volsella from Xishan Island, China. Florida Entomologist, 97, 871-876. https://doi.org/10.1653/024.097.0344
Qi, X. \& Wang, X.H. (2006) A review of Microtendipes Kieffer from China (Diptera: Chironomidae). Zootaxa, 1108, 37-51.
Sæther, O.A. (1980) Glossary of chironomid morphology terminology (Diptera: Chironomidae). Entomologica scandinavica, 14 (Supplement), 1-51.
Sæther, O.A. \& Sundal, A. (1999) Cerobregma, a new subgenus of Polypedilum Kieffer, with a tentative phylogeny of subgenera and species groups within Polypedilum (Diptera: Chironomidae). Journal of the Kansas Entomological Society, 71, 315-382.
Sasa, M. (1979) A morphological study of adults and immature stages of 20 Japanese species of the family Chironomidae (Diptera). Research Report from the National Institute for Environmental Studies, 7, 1-148.
Sasa, M. (1980) Studies on chironomid midges of the Tama River. Part 2. Description of 20 species of Chironominae recovered from a tributary. Research Report from the National Institute for Environmental Studies, 13, 9-107.
Sasa, M. (1983) Studies on chironomid midges of the Tama River. Part 5. An observation on the distribution of Chironomidae along the main stream in June, with description of 15 new species. Research Report from the National Institute for Environmental Studies, 43, 1-67.
Sasa, M. (1984) Studies on chironomid midges in lakes of the Nikko National Park. Part II. Taxonomical and morphological studies on the chironomid species collected from lakes in the Nikko National Park. Research Report from the National Institute for Environmental Studies, 70, 18-215.
Sasa, M. (1989a) Studies on the chironomid midges (Diptera, Chironomidae) of Shou River. Research Report from Toyama Prefectural Environmental Pollution Research Center, 1989, 26-44.
Sasa, M. (1989b) Chironomid midges of some rivers in western Japan. Part 3. Chironomid species collected from Kamo River, Kyoto City. Research Report from Toyama Prefectural Environmental Pollution Research Center, 1989, 62-65.
Sasa, M. (1990) Studies on the chironomid midges (Diptera, Chironomidae) of the Nansei Islands, southern Japan. Japanese Journal of Experimental Medicine, 60, 111-165.
Sasa, M. (1993) Studies on the chironomid midges (Yusurika) collected in Toyama and other areas of Japan, 1993. Part 5. The chironomids collected from lakes in the Aizu District (Fukushima). Research Report from Toyama Prefectural Environmental Pollution Research Center, 1993, 69-95.
Sasa, M. (1996) Seasonal distribution of the chironomid species collected with light traps at the side of two lakes in the Toyama City Family Park. Research Report from Toyama Prefectural Environmental Science Research Center, 1996, 15-112.
Sasa, M. (1998) Chironomidae of Japan 1998. List of species recorded, and supplemental keys for identification. Institute of Environmental and Welfare Studies, Kurobe, 155 pp .
Sasa, M. \& Kamimura, K. (1987) Chironomid midges collected on the shore of lakes in the Akan Nationa Park, Hokkaido (Diptera, Chironomidae). Research Report from the National Institute for Environmental Studies, 104, 9-61.
Sasa, M. \& Kikuchi, M. (1995) Chironomidae (Diptera) of Japan. University of Tokyo Press, Tokyo, 333 pp.
Sasa, M. \& Suzuki, H. (1991) The chironomids of the Joganji River and other places. Part 5. Studies on the chironomids of the Aso National Park area, Kyushu. Research Report from Toyama Prefectural Environmental Pollution Research Center, 1991, 93-100.
Sasa, M. \& Suzuki, H. (1995) The chironomid species collected on the Tokara Islands, Kagoshima (Diptera). Japanese Journal
of Sanitary Zoology, 46, 255-288. https://doi.org/10.7601/mez. 46.255
Sasa, M. \& Suzuki, H. (1999) Studies on the chironomid midges of Tsushima and Iki Islands, western Japan. Part 1. Species of Chironomidae collected on Tsushima. Tropical Medicine, 41, 1-53.
Sasa, M. \& Suzuki, H. (2000) Studies on the chironomid species collected on Ishigaki and lriomote Islands, southwestern Japan. Tropical Medicine, 42, 1-37.
Sasa, M. \& Suzuki, H. (2001) Studies on the chironomid species collected in Hokkaido in September, 2000. Tropical Medicine, 43, 1-38.
Sasa, M., Suzuki, H. \& Sakai, T. (1998) Studies on the chironomid midges collected on the shore of Shimanto River in April, 1998. Part. I. Description of species of the subfamily Chironominae. Tropical Medicine, 40, 47-89.

Tanaka, N., Sasa, M. \& Hashizume, S. (2003) Studies on chironomid midges in a rice paddy area in the suburbs of Maebashi City, Gunma Prefecture. Medical Entomology and Zoology, 54, 121-124. [in Japanese] https://doi.org/10.7601/mez.54.121
Tokunaga, M. (1940) Chironomidae from Japan (Diptera), XI1. New or little-known Ceratopogonidae and Chironomidae. The Philippine Journal of Science, 72, 255-311.
Townes, H.K. (1945) The Nearctic species of Tendipedini [Diptera, Tendipedidae (= Chironomidae)]. The American Midland Naturalist, 34, 1-206. https://doi.org/10.2307/2421112
Yamamoto, M. \& Yamamoto, N. (2014) Family Chironomidae. In: Editorial Committee of Catalogue of the Insect of Japan (Ed.), Catalogue of the Insects of Japan. Volume 8, Diptera. Part 1. Nematocera-Brachcera Aschiza. Touka Shobo, Fukuoka, pp. 237-362.
Zorina, O.V. (2001) New species of the genera Cryptotendipes, Dicrotendipes, Microtendipes and Stenochironomus (Diptera, Chironomidae, Chironominae) from the Russian Far East. Vestnik zoologii, 35, 31-38.

